Share to: share facebook share twitter share wa share telegram print page

Yield (engineering)

Stress–strain curve showing typical yield behavior for nonferrous alloys (stress, shown as a function of strain):

In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible and is known as plastic deformation.

The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing permanent deformation. For most metals, such as aluminium and cold-worked steel, there is a gradual onset of non-linear behavior, and no precise yield point. In such a case, the offset yield point (or proof stress) is taken as the stress at which 0.2% plastic deformation occurs. Yielding is a gradual failure mode which is normally not catastrophic, unlike ultimate failure.

For ductile materials, the yield strength is typically distinct from the ultimate tensile strength, which is the load-bearing capacity for a given material. The ratio of yield strength to ultimate tensile strength is an important parameter for applications such steel for pipelines, and has been found to be proportional to the strain hardening exponent.[1]

In solid mechanics, the yield point can be specified in terms of the three-dimensional principal stresses () with a yield surface or a yield criterion. A variety of yield criteria have been developed for different materials.

Definitions

Material Yield strength
(MPa)
Ultimate strength
(MPa)
ASTM A36 steel 250 400
Steel, API 5L X65[2] 448 531
Steel, high strength alloy ASTM A514 690 760
Steel, prestressing strands 1650 1860
Piano wire   1740–3300[3]
Carbon fiber (CF, CFK) 5650[4]
High-density polyethylene (HDPE) 26–33 37
Polypropylene 12–43 19.7–80
Stainless steel AISI 302 – cold-rolled 520 860
Cast iron 4.5% C, ASTM A-48[5] 172
Titanium alloy (6% Al, 4% V) 830 900
Aluminium alloy 2014-T6 400 455
Copper 99.9% Cu 70 220
Cupronickel 10% Ni, 1.6% Fe, 1% Mn, balance Cu 130 350
Brass 200+ ~ 550
Spider silk 1150 (??) 1400
Silkworm silk 500  
Aramid (Kevlar or Twaron) 3620 3757
UHMWPE[6][7] 20 35[8]
Bone (limb) 104–121 130
Nylon, type 6/6 45 75
Aluminium (annealed) 15–20 40–50[9]
Copper (annealed) 33 210
Iron (annealed) 80–100 350
Nickel (annealed) 14–35 140–195
Silicon (annealed) 5000–9000  
Tantalum (annealed) 180 200
Tin (annealed) 9–14 15–200
Titanium (annealed) 100–225 240–370
Tungsten (annealed) 550 550–620

It is often difficult to precisely define yielding due to the wide variety of stress–strain curves exhibited by real materials. In addition, there are several possible ways to define yielding:[10]

True elastic limit
The lowest stress at which dislocations move. This definition is rarely used since dislocations move at very low stresses, and detecting such movement is very difficult.
Proportionality limit
Up to this amount of stress, stress is proportional to strain (Hooke's law), so the stress-strain graph is a straight line, and the gradient will be equal to the elastic modulus of the material.
Elastic limit (yield strength)
Beyond the elastic limit, permanent deformation will occur. The elastic limit is, therefore, the lowest stress point at which permanent deformation can be measured. This requires a manual load-unload procedure, and the accuracy is critically dependent on the equipment used and operator skill. For elastomers, such as rubber, the elastic limit is much larger than the proportionality limit. Also, precise strain measurements have shown that plastic strain begins at very low stresses.[11][12]
Yield point
The point in the stress-strain curve at which the curve levels off and plastic deformation begins to occur.[13]
Offset yield point (proof stress)
When a yield point is not easily defined on the basis of the shape of the stress-strain curve an offset yield point is arbitrarily defined. The value for this is commonly set at 0.1% or 0.2% plastic strain.[14] The offset value is given as a subscript, e.g., MPa or MPa.[15] For most practical engineering uses, is multiplied by a factor of safety to obtain a lower value of the offset yield point. High strength steel and aluminum alloys do not exhibit a yield point, so this offset yield point is used on these materials.[14]
Upper and lower yield points
Some metals, such as mild steel, reach an upper yield point before dropping rapidly to a lower yield point. The material response is linear up until the upper yield point, but the lower yield point is used in structural engineering as a conservative value. If a metal is only stressed to the upper yield point, and beyond, Lüders bands can develop.[16]

Usage in structural engineering

Yielded structures have a lower stiffness, leading to increased deflections and decreased buckling strength. The structure will be permanently deformed when the load is removed, and may have residual stresses. Engineering metals display strain hardening, which implies that the yield stress is increased after unloading from a yield state.

Testing

Yield strength testing involves taking a small sample with a fixed cross-section area and then pulling it with a controlled, gradually increasing force until the sample changes shape or breaks. This is called a tensile test. Longitudinal and/or transverse strain is recorded using mechanical or optical extensometers.

Indentation hardness correlates roughly linearly with tensile strength for most steels, but measurements on one material cannot be used as a scale to measure strengths on another.[17] Hardness testing can therefore be an economical substitute for tensile testing, as well as providing local variations in yield strength due to, e.g., welding or forming operations. For critical situations, tension testing is often done to eliminate ambiguity. However, it is possible to obtain stress-strain curves from indentation-based procedures, provided certain conditions are met. These procedures are grouped under the term Indentation plastometry.

Strengthening mechanisms

There are several ways in which crystalline materials can be engineered to increase their yield strength. By altering dislocation density, impurity levels, grain size (in crystalline materials), the yield strength of the material can be fine-tuned. This occurs typically by introducing defects such as impurities dislocations in the material. To move this defect (plastically deforming or yielding the material), a larger stress must be applied. This thus causes a higher yield stress in the material. While many material properties depend only on the composition of the bulk material, yield strength is extremely sensitive to the materials processing as well.

These mechanisms for crystalline materials include

Work hardening

Where deforming the material will introduce dislocations, which increases their density in the material. This increases the yield strength of the material since now more stress must be applied to move these dislocations through a crystal lattice. Dislocations can also interact with each other, becoming entangled.

The governing formula for this mechanism is:

where is the yield stress, G is the shear elastic modulus, b is the magnitude of the Burgers vector, and is the dislocation density.

Solid solution strengthening

By alloying the material, impurity atoms in low concentrations will occupy a lattice position directly below a dislocation, such as directly below an extra half plane defect. This relieves a tensile strain directly below the dislocation by filling that empty lattice space with the impurity atom.

The relationship of this mechanism goes as:

where is the shear stress, related to the yield stress, and are the same as in the above example, is the concentration of solute and is the strain induced in the lattice due to adding the impurity.

Particle/precipitate strengthening

Where the presence of a secondary phase will increase yield strength by blocking the motion of dislocations within the crystal. A line defect that, while moving through the matrix, will be forced against a small particle or precipitate of the material. Dislocations can move through this particle either by shearing the particle or by a process known as bowing or ringing, in which a new ring of dislocations is created around the particle.

The shearing formula goes as:

and the bowing/ringing formula:

In these formulas, is the particle radius, is the surface tension between the matrix and the particle, is the distance between the particles.

Grain boundary strengthening

Where a buildup of dislocations at a grain boundary causes a repulsive force between dislocations. As grain size decreases, the surface area to volume ratio of the grain increases, allowing more buildup of dislocations at the grain edge. Since it requires a lot of energy to move dislocations to another grain, these dislocations build up along the boundary, and increase the yield stress of the material. Also known as Hall-Petch strengthening, this type of strengthening is governed by the formula:

where

is the stress required to move dislocations,
is a material constant, and
is the grain size.

Theoretical yield strength

Material Theoretical shear strength (GPa) Experimental shear strength (GPa)
Ag 1.0 0.37
Al 0.9 0.78
Cu 1.4 0.49
Ni 2.6 3.2[dubiousdiscuss]
α-Fe 2.6 2.75[dubiousdiscuss]

The theoretical yield strength of a perfect crystal is much higher than the observed stress at the initiation of plastic flow.[18]

That experimentally measured yield strength is significantly lower than the expected theoretical value can be explained by the presence of dislocations and defects in the materials. Indeed, whiskers with perfect single crystal structure and defect-free surfaces have been shown to demonstrate yield stress approaching the theoretical value. For example, nanowhiskers of copper were shown to undergo brittle fracture at 1 GPa,[19] a value much higher than the strength of bulk copper and approaching the theoretical value.

The theoretical yield strength can be estimated by considering the process of yield at the atomic level. In a perfect crystal, shearing results in the displacement of an entire plane of atoms by one interatomic separation distance, b, relative to the plane below. In order for the atoms to move, considerable force must be applied to overcome the lattice energy and move the atoms in the top plane over the lower atoms and into a new lattice site. The applied stress to overcome the resistance of a perfect lattice to shear is the theoretical yield strength, τmax.

The stress displacement curve of a plane of atoms varies sinusoidally as stress peaks when an atom is forced over the atom below and then falls as the atom slides into the next lattice point.[18]

where is the interatomic separation distance. Since τ = G γ and dτ/dγ = G at small strains (i.e. Single atomic distance displacements), this equation becomes:

For small displacement of γ=x/a, where a is the spacing of atoms on the slip plane, this can be rewritten as:

Giving a value of τmax equal to:

The theoretical yield strength can be approximated as .

Yield point elongation (YPE)

During monotonic tensile testing, some metals such as annealed steel exhibit a distinct upper yield point or a delay in work hardening.[20] These tensile testing phenomena, wherein the strain increases but stress does not increase as expected, are two types of yield point elongation.

Yield Point Elongation (YPE) significantly impacts the usability of steel. In the context of tensile testing and the engineering stress-strain curve, the Yield Point is the initial stress level, below the maximum stress, at which an increase in strain occurs without an increase in stress. This characteristic is typical of certain materials, indicating the presence of YPE.[20] The mechanism for YPE has been related to carbon diffusion, and more specifically to Cottrell atmospheres.

YPE can lead to issues such as coil breaks, edge breaks, fluting, stretcher strain, and reel kinks or creases, which can affect both aesthetics and flatness. Coil and edge breaks may occur during either initial or subsequent customer processing, while fluting and stretcher strain arise during forming. Reel kinks, transverse ridges on successive inner wraps of a coil, are caused by the coiling process.[20]

When these conditions are undesirable, it is essential for suppliers to be informed to provide appropriate materials. The presence of YPE is influenced by chemical composition and mill processing methods such as skin passing or temper rolling, which temporarily eliminate YPE and improve surface quality. However, YPE can return over time due to aging, which is holding at a temperature usually 200-400 °C.[20]

Despite its drawbacks, YPE offers advantages in certain applications, such as roll forming, and reduces springback. Generally, steel with YPE is highly formable.[20]

See also

References

  1. ^ Scales, M.; Kornuta, J.A.; Switzner, N.; Veloo, P. (1 December 2023). "Automated Calculation of Strain Hardening Parameters from Tensile Stress vs. Strain Data for Low Carbon Steel Exhibiting Yield Point Elongation". Experimental Techniques. 47 (6): 1311–1322. doi:10.1007/s40799-023-00626-4. ISSN 1747-1567.
  2. ^ "ussteel.com". Archived from the original on 22 June 2012. Retrieved 15 June 2011.
  3. ^ ASTM A228-A228M-14
  4. ^ "complore.com". Archived from the original on 19 July 2011. Retrieved 10 September 2010.
  5. ^ Beer, Johnston & Dewolf 2001, p. 746.
  6. ^ "Technical Product Data Sheets UHMWPE". Archived from the original on 14 October 2011. Retrieved 18 August 2010.
  7. ^ "unitex-deutschland.eu" (PDF). Archived from the original (PDF) on 25 March 2012. Retrieved 15 June 2011.
  8. ^ matweb.com
  9. ^ A. M. Howatson, P. G. Lund and J. D. Todd, "Engineering Tables and Data", p. 41.
  10. ^ G. Dieter, Mechanical Metallurgy, McGraw-Hill, 1986
  11. ^ Flinn, Richard A.; Trojan, Paul K. (1975). Engineering Materials and their Applications. Boston: Houghton Mifflin Company. p. 61. ISBN 978-0-395-18916-0.
  12. ^ Barnes, Howard (1999). "The yield stress—a review or 'παντα ρει'—everything flows?". Journal of Non-Newtonian Fluid Mechanics. 81 (1–2): 133–178. doi:10.1016/S0377-0257(98)00094-9.
  13. ^ Ross 1999, p. 56.
  14. ^ a b Ross 1999, p. 59.
  15. ^ ISO 6892-1:2009
  16. ^ Degarmo, p. 377.
  17. ^ Pavlina, E.J.; Van Tyne, C.J. (2008). "Correlation of Yield Strength and Tensile Strength with Hardness for Steels". Journal of Materials Engineering and Performance. 17 (6): 888–893. Bibcode:2008JMEP...17..888P. doi:10.1007/s11665-008-9225-5. S2CID 135890256.
  18. ^ a b H., Courtney, Thomas (2005). Mechanical behavior of materials. Waveland Press. ISBN 978-1577664253. OCLC 894800884.{{cite book}}: CS1 maint: multiple names: authors list (link)
  19. ^ Richter, Gunther (2009). "Ultrahigh Strength Single-Crystalline Nanowhiskers Grown by Physical Vapor Deposition". Nano Letters. 9 (8): 3048–3052. Bibcode:2009NanoL...9.3048R. CiteSeerX 10.1.1.702.1801. doi:10.1021/nl9015107. PMID 19637912.
  20. ^ a b c d e "Yield Point Elongation (YPE) – Pros and Cons". www.baileymetalprocessing.com. Retrieved 16 June 2024.

Bibliography

This information is adapted from Wikipedia which is publicly available.

Read other articles:

Wilhelm Moberg Född31 maj 1832[1]Söderbärke församling[1], SverigeDöd8 september 1880 (48 år)Norrköpings S:t Olai församling[1], SverigeMedborgare iSverigeSysselsättningLäkareBarnLudvig Moberg (f. 1866)Axel Moberg (f. 1872)Ellen Moberg (f. 1874)[2]Maria E. Moberg (f. 1877)[3]FöräldrarLars Erik Moberg[4]Charlotta Matilda Stolpe[4]Redigera Wikidata Carl Wilhelm August Moberg, född den 31 maj 1832 i Söderbärke socken, Kopparbergs län, död den 8 september 1880 i Lund,…

Events at the2007 World ChampionshipsTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen5000 mmenwomen10,000 mmenwomen100 m hurdleswomen110 m hurdlesmen400 m hurdlesmenwomen3000 msteeplechasemenwomen4 × 100 m relaymenwomen4 × 400 m relaymenwomenRoad eventsMarathonmenwomen20 km walkmenwomen50 km walkmenField eventsHigh jumpmenwomenPole vaultmenwomenLong jumpmenwomenTriple jumpmenwomenShot putmenwomenDiscus throwmenwomenHammer throwmenwomenJavelin throwmenwomenCombined…

Mochamad Reza UtamaPanglima KostradPetahanaMulai menjabat 29 November 2023PendahuluMaruli SimanjuntakDirektur Kecabangan Pusat Zeni Angkatan Darat ke-2Masa jabatan25 Mei 2021 – 21 Januari 2022PendahuluYoannes Dwi PrasetyoPenggantiHaryono Informasi pribadiLahir1 Agustus 1966 (umur 57)Surabaya, Jawa TimurAlma materAkademi Militer (1988)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratMasa dinas1988—sekarangPangkat Letnan Jenderal TNINRP32451SatuanZeni…

Bài này không có nguồn tham khảo nào. Mời bạn giúp cải thiện bài bằng cách bổ sung các nguồn tham khảo đáng tin cậy. Các nội dung không có nguồn có thể bị nghi ngờ và xóa bỏ. Nếu bài được dịch từ Wikipedia ngôn ngữ khác thì bạn có thể chép nguồn tham khảo bên đó sang đây. Đồ thị của hàm số f trong toán học là tập hợp tất cả các cặp có thứ tự (x, f(x)). Nếu đầu vào x là một c

أنابيل تعود للديارAnnabelle Comes Homeبوستر الفيلممعلومات عامةالصنف الفني رعبتاريخ الصدور26 يونيو 2019 (2019-06-26) (الولايات المتحدة)مدة العرض 106 دقائق[1]اللغة الأصلية الانجليزيةالبلد الولايات المتحدةموقع الويب annabellemovie.com الطاقمالمخرج غاري دوبرمانالقصة غاري دوبرمانجيمس وا…

Сен-СерненSaint-Sernin Країна  Франція Регіон Овернь-Рона-Альпи  Департамент Ардеш  Округ Ларжантьєр Кантон Обена Код INSEE 07296 Поштові індекси 07200 Координати 44°34′20″ пн. ш. 4°23′33″ сх. д.H G O Висота 167 - 365 м.н.р.м. Площа 5,78 км² Населення 1772 (01-2020[1]) Густота 277,85 ос./км…

Ministry of agriculture in Somalia Ministry of Agriculture and IrrigationWasaaradda Beeraha iyo WaraabkaCoat of arms of SomaliaAgency overviewFormedSeptember 1960JurisdictionSomaliaHeadquartersMogadishuAgency executiveDr. Said Hussein Iid, Minister of Agriculture and Irrigation of SomaliaParent agencyCabinet of Somalia The Ministry of Agriculture and Irrigation of Somalia (MOAIOS) (Somali: Wasaaradda Beeraha iyo Waraabka ee Soomaaliya) is a ministry responsible for Agriculture in Somalia. The th…

Vicente Segrelles Vicente Segrelles Sacristán (Barcelona, 9 september 1940) is een Catalaans-Spaans tekenaar en schilder, bekend van onder andere de reeks stripverhalen De Huurling. Kenmerk van Segrelles' werk is dat hij niet tekent maar in olieverf schildert. Biografie Segrelles was reeds in zijn jeugd gefascineerd door tekenen. Hij ging op zijn 14e naar de vakschool van de vrachtwagenfabrikant ENASA (fabrikant van Pegaso vrachtwagens), omdat een carrière in de kunst in het naoorlogse Spanje …

?Kerivoula picta Охоронний статус Найменший ризик (МСОП 3.1) Біологічна класифікація Домен: Еукаріоти (Eukaryota) Царство: Тварини (Animalia) Тип: Хордові (Chordata) Клас: Ссавці (Mammalia) Ряд: Рукокрилі (Chiroptera) Родина: Лиликові (Vespertilionidae) Рід: Kerivoula Біноміальна назва Kerivoula picta(Pallas, 1767) Посилання Вікіс

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2019) جون جونز كلارك (بالإنجليزية: John Jones Clarke)‏  معلومات شخصية الميلاد 24 فبراير 1803  نورتون  الوفاة 5 نوفمبر 1887 (84 سنة)   بوسطن  الإقامة ماساتشوستس  مواطنة …

Yang MuliaWilhelmus Johannes DemarteauM.S.F.Uskup Emeritus BanjarmasinGerejaGereja Katolik RomaKeuskupanBanjarmasinPenunjukan6 Januari 1954(36 tahun, 347 hari)Masa jabatan berakhir6 Juni 1983(66 tahun, 133 hari)PendahuluJoannes Groen, M.S.F.PenerusFransiskus Xaverius Rocharjanta Prajasuta, M.S.F.ImamatTahbisan imam27 Juli 1941[1](24 tahun, 184 hari)Tahbisan uskup5 Mei 1954(37 tahun, 101 hari)oleh Georges-Marie-Joseph-Hubert-Ghislain de Jonghe …

British politician The Right HonourableThe Baroness Tweedsmuir of BelhelviePCMinister of State for Foreign and Commonwealth AffairsIn office7 April 1972 – 4 March 1974Prime MinisterEdward HeathPreceded byRichard WoodSucceeded byJulian AmeryMinister of State for ScotlandIn office23 June 1970 – 7 April 1972Prime MinisterEdward HeathPreceded byThe Lord HughesSucceeded byThe Lord PolwarthParliamentary Under-Secretary of State for ScotlandIn office3 December 1962 – 16…

中国人民政治协商会议全国委员会文史和学习委员会办公室(中国人民政治协商会议全国委员会办公厅九局) 主要领导 主任 陈爱菲 机构概况 业务上级机构 全国政协文史和学习委员会 组织上级机构 全国政协办公厅 机构类型 全国政协文史和学习委员会的办事机构全国政协机关工作部门 行政级别 正司局级 联络方式 总部  实际地址 北京市西城区太平桥大街23号 对应机构 中国…

Non-profit organization This article may have been created or edited in return for undisclosed payments, a violation of Wikipedia's terms of use. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. (October 2019) The Institute for College Access and Success (TICAS) is a non-profit organization founded by Lauren Asher and Robert Shireman in 2005[1] that works to make higher education more available and affordable for people in the United…

Afghan Taliban warlord (born 1979) KhalifaSirajuddin Haqqaniسِراج الدّين حقانيHaqqani at a March 2022 ceremony for Afghan National Police recruits in KabulActing Minister of Interior AffairsIncumbentAssumed office 7 September 2021DeputyIbrahim Sadr (acting)Supreme LeaderHibatullah AkhundzadaPrime MinisterHasan Akhund (acting)Preceded byIbrahim Sadr (acting)First Deputy Leader of AfghanistanIncumbentAssumed office 15 August 2021Serving with Mullah Yaqooband Ab…

Ця стаття не містить посилань на джерела. Ви можете допомогти поліпшити цю статтю, додавши посилання на надійні (авторитетні) джерела. Матеріал без джерел може бути піддано сумніву та вилучено. (жовтень 2023) Національна футбольна конференція Дата створення / заснування …

Seram Bagian TimurKabupaten LambangMotto: Ita Wotu NusaKita Membangun DaerahPetaSeram TimurPetaTampilkan peta MalukuSeram TimurSeram Timur (Maluku dan Papua)Tampilkan peta Maluku dan PapuaSeram TimurSeram Timur (Indonesia)Tampilkan peta IndonesiaKoordinat: 3°06′11″S 130°29′27″E / 3.103133°S 130.4908322°E / -3.103133; 130.4908322Negara IndonesiaProvinsiMalukuTanggal berdiri18 Desember 2003; 19 tahun lalu (2003-12-18)Dasar hukumUU №40 Tahun 2003…

Frank RollestonFrank Rolleston26th Minister of JusticeIn office18 January 1926 – 26 November 1928Prime MinisterGordon CoatesPreceded byJames ParrSucceeded byWilliam Downie Stewart15th Minister of DefenceIn office18 January 1926 – 26 November 1928Prime MinisterGordon CoatesPreceded byHeaton RhodesSucceeded byWilliam Downie Stewart14th Attorney-GeneralIn office24 May 1926 – 26 November 1928Preceded byWilliam Downie StewartSucceeded byThomas SideyMember of the New Z…

Ця стаття не містить посилань на джерела. Ви можете допомогти поліпшити цю статтю, додавши посилання на надійні (авторитетні) джерела. Матеріал без джерел може бути піддано сумніву та вилучено. (грудень 2020) Мікроконтролер I8048. Intel 8048 — перший мікроконтроллер корпорації…

Money in the BankPoster promosi menampilkan Seth Freakin Rollins dan berbagai pegulat WWE lainnya, serta landmark London Elizabeth Tower dan Tower Bridge.InformasiPromotorWWEMerekRawSmackDownTanggal1 Juli 2023Kehadiran18,885[1]TempatThe O2 ArenaLokasiLondon, EnglandKronologi acara WWE Network NXT Battleground Money in the Bank NXT The Great American Bash Kronologi Money in the Bank 2022 Money in the Bank Money in the Bank 2023 adalah acara bayar-per-tayang gulat profesional Money in the …

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 18.218.124.127