Yao's Millionaires' problem

Yao's Millionaires' problem is a secure multi-party computation problem introduced in 1982 by computer scientist and computational theorist Andrew Yao. The problem discusses two millionaires, Alice and Bob, who are interested in knowing which of them is richer without revealing their actual wealth.

This problem is analogous to a more general problem where there are two numbers and and the goal is to determine whether the inequality is true or false without revealing the actual values of and .

The Millionaires' problem is an important problem in cryptography, the solution of which is used in e-commerce and data mining. Commercial applications sometimes have to compare numbers that are confidential and whose security is important.

Many solutions have been introduced for the problem, including physical solutions based on cards.[1] The first solution, presented by Yao, is exponential in time and space.[2]

Protocols and proof

The protocol of Hsiao-Ying Lin and Wen-Guey Tzeng

Let be a binary string of length n.

Denote 0-encoding of s as and 1-encoding of s as

Then, the protocol[3] is based on the following claim:

Assume that a and b are binary strings of length n bits.
Then if the sets and have a common element (where a and b are the binary encodings of the corresponding integers).

The protocol leverages this idea into a practical solution to Yao's Millionaires' problem by performing a private set intersection between and .

The protocol of Ioannidis and Ananth

The protocol[4] uses a variant of oblivious transfer, called 1-2 oblivious transfer. In that transfer one bit is transferred in the following way: a sender has two bits and . The receiver chooses , and the sender sends with the oblivious transfer protocol such that

  1. the receiver doesn't get any information about ,
  2. the value of is not exposed to the sender.

To describe the protocol, Alice's number is indicated as , Bob's number as , and it is assumed that the length of their binary representation is less than for some . The protocol takes the following steps.

  1. Alice creates a matrix of size of -bit numbers, where is the length of the key in the oblivious transfer protocol. In addition, she chooses two random numbers and , where and .
  2. will be the -th bit of the number that appears in cell (where indicates the least significant bit). In addition, is denoted as the -th bit of Alice's number . For every , Alice does the following actions.
    1. For every bit she sets and to random bits.
    2. If , let , otherwise let and for every set to a random bit.
    3. For set and to .
    4. For every , will be a random -bit number, and will be another number of bits where all bits except the last two are random, and the last two are calculated as and , where is the bitwise XOR operation.
    5. For set . Where indicates the bitwise rotation of to the left by bits.
  3. For every , Bob transfers with the oblivious transfer protocol, where , and is the -th bit of .
  4. Alice sends to Bob .
  5. Bob calculates the bitwise XOR of all the numbers he got in step 3 and from step 4. Bob scans the result from left to right until he finds a large sequence of zero bits. Let be the bit to the right of that sequence ( is non zero). If the bit to the right of equals 1, then , otherwise .

Proof

Correctness

Bob calculates the final result from , and the result depends on . K, and therefore c as well, can be split into 3 parts. The left part doesn't affect the result. The right part has all the important information, and in the middle is a sequence of zeros that separates those two parts. The length of each partition of c is linked to the security scheme.

For every i, only one of has non-zero right part, and it is if , and otherwise. In addition, if , and has a non-zero right part, then has also a non-zero right part, and the two leftmost bits of this right part will be the same as the one of . As a result, the right part of c is a function of the entries Bob transferred correspond to the unique bits in a and b, and the only bits in the right part in c that are not random are the two leftmost, exactly the bits that determines the result of , where i is the highest-order bit in which a and b differ. In the end, if , then those two leftmost bits will be 11, and Bob will answer that . If the bits are 10, then , and he will answer . If , then there will be no right part in c, and in this case the two leftmost bits in c will be 11, and will indicate the result.

Security

The information Bob sends to Alice is secure because it is sent through oblivious transfer, which is secure.

Bob gets 3 numbers from Alice:

  1. . For every Bob receives one such number, and is random, so no secure information is transformed.
  2. N. This is an XOR of random numbers, and therefore reveals no information. The relevant information is revealed only after calculating c.
  3. c. The same goes for c. The left part of c is random, and the right part is random as well, except for the two leftmost bits. Deducing any information from those bits requires guessing some other values, and the chance of guessing them correct is very low.

Complexity

The complexity of the protocol is . Alice constructs d-length number for each bit of a, and Bob calculates XOR d times of d-length numbers. The complexity of those operations is . The communication part takes also . Therefore, the complexity of the protocol is

See also

References

  1. ^ Miyahara, Daiki; Hayashi, Yu-ichi; Mizuki, Takaaki; Sone, Hideaki (2020). "Practical card-based implementations of Yao's millionaire protocol". Theoretical Computer Science. 803: 207–221. doi:10.1016/j.tcs.2019.11.005.
  2. ^ Yao, Andrew C. (November 1982). "Protocols for secure computations". 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982). Vol. 1. pp. 160–164. doi:10.1109/SFCS.1982.88.
  3. ^ Lin, Hsiao-Ying; Tzeng, Wen-Guey (2005-06-07). "An Efficient Solution to the Millionaires' Problem Based on Homomorphic Encryption". Applied Cryptography and Network Security. Lecture Notes in Computer Science. Vol. 3531. pp. 456–466. CiteSeerX 10.1.1.75.4917. doi:10.1007/11496137_31. ISBN 978-3-540-26223-7.
  4. ^ Ioannidis, I.; Grama, A. (2003). "An efficient protocol for Yao's millionaires' problem". 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the. IEEE. pp. 6 pp. CiteSeerX 10.1.1.110.8816. doi:10.1109/hicss.2003.1174464. ISBN 978-0769518749. S2CID 6907526.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Ryszard KotysRyszard Kotys pada 2009Lahir(1932-03-20)20 Maret 1932Mniów, PolandiaMeninggal28 Januari 2021(2021-01-28) (umur 88)Poznań, PolandiaPekerjaanPemeranTahun aktif1953–2021 Ryszard Kotys (20 Maret 1932 – 28 Januari ...

 

Untuk kegunaan lain, lihat Portland Timbers. Portland TimbersJulukanThe TimbersBerdiri20 Maret 2009; 14 tahun lalu (2009-03-20)[nb 1]StadionProvidence ParkPortland, Oregon(Kapasitas: 25,218)PemilikPeregrine SportsPresidenMerritt PaulsonPelatih kepalaGiovanni SavareseLigaMajor League Soccer2021Wilayah barat: ke-4Keseluruhan: ke-5Play-off: Runner-upSitus webSitus web resmi klub Kostum kandang Kostum tandang Musim ini Portland Timbers FC adalah klub sepak bola profesional Ameri...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Bartine Burkett ZaneBartine Burkett di The High Sign (1921)Lahir(1898-02-09)9 Februari 1898Robeline, Louisiana, A.S.Meninggal20 Mei 1994(1994-05-20) (umur 96)Burbank, California, A.S.PekerjaanAktrisTahun aktif1917–1983Suami/istriRalph Zane...

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...

 

2014 American found footage horror film by Grégory Levasseur This article is missing information about the film's production. Please expand the article to include this information. Further details may exist on the talk page. (September 2019) This article is about the American film. For the Russian film, see The PyraMMMid. The PyramidTheatrical release posterDirected byGrégory LevasseurWritten byDaniel MeersandNick SimonProduced byAlexandre AjaMark CantonChady Eli MattarScott C. SilverStarri...

 

Cette chronologie est une ébauche concernant la science. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Chronologies Données clés 2005 2006 2007  2008  2009 2010 2011Décennies :1970 1980 1990  2000  2010 2020 2030Siècles :XIXe XXe  XXIe  XXIIe XXIIIeMillénaires :Ier IIe  IIIe  Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Béni...

Perhimpunan Bangsa-Bangsa Asia Tenggara Burmaအရှေ့တောင်အာရှနိုင်ငံများအသင်းFilipino:Samahán ng mga Bansâ sa Timog Silangang Asya[1]Indonesia:Perhimpunan Bangsa-bangsa Asia Tenggara[2]Khmer:សមាគមប្រជាជាតិអាស៊ីអាគ្នេយ៍Lao:ສະມາຄົມປະຊາຊາດແຫ່ງອາຊີຕະເວັນອອກສຽງໃຕ້Melayu:Persatuan Negara-negara As...

 

  هذه المقالة عن جمهورية العراق. لمعانٍ أخرى، طالع العراق (توضيح).   العراق جمهورية العراقكۆماری عێراق  (كردية) العراقعلم العراق العراقشعار العراق العراق الشعار الوطنيالله أكبر النشيد: موطني[1] الأرض والسكان إحداثيات 33°N 43°E / 33°N 43°E / 33; 43   [2&...

 

Tina Smith Senator Amerika Serikat dari MinnesotaPetahanaMulai menjabat 3 Januari 2018Menjabat bersama Amy KlobucharDitunjuk olehMark Dayton PendahuluAl FrankenPenggantiPetahanaWakil Gubernur Minnesota ke-48Masa jabatan5 Januari 2015 – 2 Januari 2018GubernurMark Dayton PendahuluYvonne Prettner SolonPenggantiMichelle Fischbach Informasi pribadiLahirChristine Elizabeth Flint[1]4 Maret 1958 (umur 66)Albuquerque, New Mexico, Amerika SerikatPartai politikPartai ...

Untuk aktor dengan nama yang mirip, lihat Alec Baldwin. Adam BaldwinAdam BaldwinLahir27 Februari 1962 (umur 62)Winnetka, Illinois, U.S.PekerjaanAktorTahun aktif1980–sekarangSuami/istriAmi Julius ​(m. 1988)​Anak3 Adam Baldwin (lahir 27 Februari 1962) adalah seorang aktor Amerika. Dia membintangi Full Metal Jacket (1987) sebagai Ibu Hewan, serta di serial televisi Firefly dan film lanjutannya Serenity sebagai Jayne Cobb. Perannya termasuk Stillman di Ord...

 

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ран�...

 

  لمعانٍ أخرى، طالع فتح المتعال (توضيح). فتح المتعال في مدح النعال فَتْحُ الْمُتَعَال فِي مِدْحِ النِّعَال  معلومات الكتاب المؤلف أحمد المقري التلمساني  البلد مصر اللغة العربية  الناشر دار الكتب العلمية تاريخ النشر 2006 الموضوع السيرة النبوية  التقديم عدد الص...

Nahum GoldmannNahum GoldmannNama asal נחום גולדמןLahir(1895-07-10)10 Juli 1895Vishnevo, Kekaisaran Rusia(kini Vishnyeva, Belarus)Meninggal29 Agustus 1982(1982-08-29) (umur 87)Bad Reichenhall, JermanDikenal atasPendiri dan presiden Kongres Yahudi Sedunia Nahum Goldmann (Ibrani: נחום גולדמן) (10 Juli 1895 – 29 Agustus 1982) adalah seorang Zionis utama. Ia adalah pendiri Kongres Yahudi Sedunia dan presidennya dari 1951 sampai 1978, dan juga meru...

 

Period of reduced funding and interest in AI research Part of a series onArtificial intelligence Major goals Artificial general intelligence Recursive self-improvement Planning Computer vision General game playing Knowledge reasoning Machine learning Natural language processing Robotics AI safety Approaches Symbolic Deep learning Bayesian networks Evolutionary algorithms Situated approach Hybrid intelligent systems Systems integration Applications Projects Deepfake Machine translation Generat...

 

Voci principali: Storia di Sora, Sora (Italia). Distretto di SoraInformazioni generaliCapoluogoSora Dipendente da Terra di Lavoro Suddiviso in8 Circondari39 comuni16 villaggi AmministrazioneOrgani deliberativiSottintendenteConsiglio distrettuale Evoluzione storicaInizio1806 con Antonio Siciliani CausaL. 132 del 1806 del Regno di Napoli Fine1860 CausaOccupazione garibaldina e annessione al Regno di Sardegna. Preceduto da Succeduto da Circondario di Sora Cartografia Il distretto di Sora fu una...

此條目没有列出任何参考或来源。 (2013年2月8日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 莱奥波尔多·加尔铁里Leopoldo Fortunato Galtieri Castelli 阿根廷总统(實質)任期1981年12月22日—1982年6月18日副总统Víctor Martínez前任卡洛斯·拉科斯特继任阿尔弗雷多·奥斯卡·圣琼 个人资料出生(1926-07-15)1926�...

 

نوغةمعلومات عامةالمنشأ الشرق الأوسط النوع حلويات المكونات الرئيسية سكر تعديل - تعديل مصدري - تعديل ويكي بيانات النوغة (وتكتب أيضا النوجة) هي نوع من الحلوى مصنوعة من السكر و/أو العسل مع المكسرات المحمصة (لوز، فستق، جوز، مكاداميا) وأحيانا تحتوي بعض الفواكة المجففة.[1][2 ...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Road signs in Iceland – news · newspapers · books · scholar · JSTOR (December 2018) (Learn how and when to ...

2004 American science fiction television series Battlestar GalacticaGenre Military science fiction Political drama[1][2][3] Post-apocalyptic Space opera Based onBattlestar Galacticaby Glen A. LarsonDeveloped byRonald D. MooreStarring Edward James Olmos Mary McDonnell Katee Sackhoff Jamie Bamber James Callis Tricia Helfer Grace Park Michael Hogan Aaron Douglas Tahmoh Penikett Paul Campbell Nicki Clyne Michael Trucco Alessandro Juliani Kandyse McClure Opening themeGayatr...

 

First Nations government Map of Nanoose First Nation TerritoryThe Nanoose First Nation, also known the Snaw-naw-as First Nation,[1] is a First Nations government located on central Vancouver Island in southwestern British Columbia, Canada, in the vicinity of the community of Nanoose Bay. They are Coast Salish people, and one of the most northern tribes on the east side of Vancouver Island. They speak Hul’q’umi’num’, which is 1 of 3 branches of the Halkomelem dialect spoken fro...