Weak stability boundary

Weak stability boundary (WSB), including low-energy transfer, is a concept introduced by Edward Belbruno in 1987. The concept explained how a spacecraft could change orbits using very little fuel.

Weak stability boundary is defined for the three-body problem. This problem considers the motion of a particle P of negligible mass moving with respect to two larger bodies, P1, P2, modeled as point masses, where these bodies move in circular or elliptical orbits with respect to each other, and P2 is smaller than P1.[1]

The force between the three bodies is the classical Newtonian gravitational force. For example, P1 is the Earth, P2 is the Moon and P is a spacecraft; or P1 is the Sun, P2 is Jupiter and P is a comet, etc. This model is called the restricted three-body problem.[1] The weak stability boundary defines a region about P2 where P is temporarily captured. This region is in position-velocity space.  Capture means that the Kepler energy between P and P2 is negative. This is also called weak capture.[1]

Background

This boundary was defined for the first time by Edward Belbruno of Princeton University in 1987.[2] He described a Low-energy transfer which would allow a spacecraft to change orbits using very little fuel. It was for motion about Moon (P2) with P1 = Earth. It is defined algorithmically by monitoring cycling motion of P about the Moon and finding the region where cycling motion transitions between stable and unstable after one cycle. Stable motion means P can completely cycle about the Moon for one cycle relative to a reference section, starting in weak capture. P needs to return to the reference section with negative Kepler energy. Otherwise, the motion is called unstable, where P does not return to the reference section within one cycle or if it returns, it has non-negative Kepler energy.[2][1]

The set of all transition points about the Moon comprises the weak stability boundary, W. The motion of P is sensitive or chaotic as it moves about the Moon within W. A mathematical proof that the motion within W is chaotic was given in 2004.[1] This is accomplished by showing that the set W about an arbitrary body P2 in the restricted three-body problem contains a hyperbolic invariant set of fractional dimension consisting of the infinitely many intersections Hyperbolic manifolds.[1]

The weak stability boundary was originally referred to as the fuzzy boundary.[3][4] This term was used since the transition between capture and escape defined in the algorithm is not well defined and limited by the numerical accuracy. This defines a "fuzzy" location for the transition points. It is also due the inherent chaos in the motion of P near the transition points. It can be thought of as a fuzzy chaos region. As is described in an article in Discover magazine, the WSB can be roughly viewed as the fuzzy edge of a region, referred to as a gravity well, about a body (the Moon), where its force of gravity  becomes small enough to be dominated by force of gravity of another body (the Earth)  and the motion there is chaotic.[3]

A much more general algorithm defining W was given in 2007.[5] It defines W relative to n-cycles, where n = 1,2,3,..., yielding boundaries of order n. This gives a much more complex region consisting of the union of all the weak stability boundaries of order n. This definition was explored further in 2010.[6] The results suggested that W consists, in part, of the hyperbolic network of invariant manifolds associated to the Lyapunov orbits about the L1, L2 Lagrange points near P2. The explicit determination of the set W about P2 = Jupiter, where P1 is the Sun, is described in "Computation of Weak Stability Boundaries: Sun-Jupiter Case".[7] It turns out that a weak stability region can also be defined relative to the larger mass point, P1. A proof of the existence of the weak stability boundary about P1 was given in 2012,[8] but a different definition is used. The chaos of the motion is analytically proven in "Geometry of Weak Stability Boundaries".[8] The boundary is studied in "Applicability and Dynamical Characterization of the Associated Sets of the Algorithmic Weak Stability Boundary in the Lunar Sphere of Influence".[9]

Applications

There are a number of important applications for the weak stability boundary (WSB). Since the WSB defines a region of temporary capture, it can be used, for example, to find transfer trajectories from the Earth to the Moon that arrive at the Moon within the WSB region in weak capture, which is called ballistic capture for a spacecraft. No fuel is required for capture in this case. This was numerically demonstrated in 1987.[2] This is the first reference for ballistic capture for spacecraft and definition of the weak stability boundary. The boundary was operationally demonstrated to exist in 1991 when it was used to find a ballistic capture transfer to the Moon for Japan's Hiten spacecraft.[10] Other missions have used the same transfer type as Hiten, including Grail, Capstone, Danuri, Hakuto-R Mission 1 and SLIM. The WSB for Mars is studied in "Earth-Mars Transfers with Ballistic Capture"[11] and ballistic capture transfers to Mars are computed. The BepiColombo mission of ESA will achieve ballistic capture at the WSB of Mercury in 2025.

The WSB region can be used in the field of Astrophysics. It can be defined for stars within open star clusters. This is done in "Chaotic Exchange of Solid Material Between Planetary Systems: Implications for the Lithopanspermia Hypothesis"[12] to analyze the capture of solid material that may have arrived on the Earth early in the age of the Solar System to study the validity of the lithopanspermia hypothesis.

Numerical explorations of trajectories for P starting in the WSB region about P2 show that after the particle P escapes P2 at the end of weak capture, it moves about the primary body, P1, in a near resonant orbit, in resonance with P2 about P1. This property was used to study comets that move in orbits about the Sun in orbital resonance with Jupiter, which change resonance orbits by becoming weakly captured by Jupiter.[13] An example of such a comet is 39P/Oterma.

This property of change of resonance of orbits about P1 when P is weakly captured by the WSB of P2 has an interesting application to the field of quantum mechanics to the motion of an electron about the proton in a hydrogen atom. The transition motion of an electron about the proton between different energy states described by the Schrödinger equation is shown to be equivalent to the change of resonance of P about P1 via weak capture by P2 for a family of transitioning resonance orbits.[14] This gives a classical model using chaotic dynamics with Newtonian gravity for the motion of an electron.

References

  1. ^ a b c d e f Belbruno, Edward (2004). Capture Dynamics and Chaotic Motions in Celestial Mechanics. Princeton University Press. ISBN 9780691094809. Archived from the original on 2019-06-01. Retrieved 2022-09-01.
  2. ^ a b c Belbruno, E. (May 1987). "Lunar capture orbits, a method of constructing earth moon trajectories and the lunar GAS mission". Lunar Capture Orbits, A method of Constructing Earth-Moon Trajectories and the Lunar GAS Mission (PDF). Proceedings of the 19th AIAA/DGGLR/JSASS International Electric Propulsion Conference. doi:10.2514/6.1987-1054. Archived from the original (PDF) on 2022-08-01. Retrieved 2023-09-08.
  3. ^ a b Frank, Adam (September 1, 1994). "Gravity's Rim: Riding Chaos to the Moon". Discover.
  4. ^ Belbruno, E. (May–June 1992). "Through the Fuzzy Boundary: A New Route to the Moon" (PDF). Planetary Report. 7 (3): 8–10.
  5. ^ Garcia, F.; Gomez, G. (2007). "A Note on the Weak Stability Boundary" (PDF). Celestial Mechanics and Dynamical Astronomy. 97: 87–100. doi:10.1007/s10569-006-9053-6. S2CID 16767342. Archived from the original (PDF) on 2022-09-01. Retrieved 2022-09-01.
  6. ^ Belbruno, E.; Gidea, M.; Topputo, F. (2010). "Weak Stability Boundary and Invariant Manifolds" (PDF). SIAM Journal on Applied Dynamical Systems. 9 (3): 1060–1089. doi:10.1137/090780638. Archived from the original (PDF) on 2022-09-01. Retrieved 2022-09-01.
  7. ^ Topputo, F.; Belbruno, E. (2009). "Computation of Weak Stability Boundaries: Sun-Jupiter Case" (PDF). Celestial Mechanics and Dynamical Astronomy. 105: 3–17. doi:10.1007/s10569-009-9222-5. S2CID 121915109. Archived (PDF) from the original on 2022-09-01. Retrieved 2022-09-01.
  8. ^ a b Belbruno, E.; Gidea, M.; Topputo, F. (2013). "Geometry of Weak Stability Boundaries". Qualitative Theory of Dynamical Systems. 12 (3): 53–55. arXiv:1204.1502. doi:10.1007/s12346-012-0069-x. S2CID 16086395.
  9. ^ Sousa Silva, P. A.; Terra, M. O. (2012). "Applicability and Dynamical Characterization of the Associated Sets of the Algorithmic Weak Stability Boundary in the Lunar Sphere of Influence" (PDF). Celestial Mechanics and Dynamical Astronomy. 113 (2): 141–168. Bibcode:2012CeMDA.113..141S. doi:10.1007/s10569-012-9409-z. S2CID 121436433. Archived from the original (PDF) on 2022-09-01. Retrieved 2022-09-01.
  10. ^ Belbruno, E.; Miller, J. (1993). "Sun-Perturbed Earth-to-Moon Transfers with Ballistic Capture" (PDF). Journal of Guidance, Control, and Dynamics. 9 (4): 770. Bibcode:1993JGCD...16..770B. doi:10.2514/3.21079. Archived from the original (PDF) on 2022-09-01. Retrieved 2022-09-01.
  11. ^ Topputo, F.; Belbruno, E. (2015). "Earth-Mars Transfers with Ballistic Capture". Celestial Mechanics and Dynamical Astronomy. 121 (4): 329–346. arXiv:1410.8856. Bibcode:2015CeMDA.121..329T. doi:10.1007/s10569-015-9605-8. S2CID 119259095.
  12. ^ Belbruno, E.; Moro-Martin, A.; Malhotra, R.; Savransky, D. (2012). "Chaotic Exchange of Solid Material Between Planetary Systems: Implications for the Lithopanspermia Hypothesis". Astrobiology. 12 (8): 754–774. arXiv:1205.1059. doi:10.1089/ast.2012.0825. PMC 3440031. PMID 22897115.
  13. ^ Belbruno, E.; Marsden, B. (1997). "Resonance Hopping in Comets". The Astronomical Journal. 113: 1433–44. Bibcode:1997AJ....113.1433B. doi:10.1086/118359. Archived from the original on 2022-09-01. Retrieved 2022-09-01.
  14. ^ Belbruno, E. (2020). "Relation Between Solutions of the Schrodinger Equation with Transitioning Resonance Solutions of the Gravitational Three-Body Problem". Journal of Physics Communications. 4 (15012): 015012. arXiv:1905.06705. Bibcode:2020JPhCo...4a5012B. doi:10.1088/2399-6528/ab693f. S2CID 211076278. Archived from the original on 2020-02-16. Retrieved 2022-09-01.

Further reading

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Parmena aurora Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Parmena Spesies: Parmena aurora Parmena aurora adalah spesies kumbang tanduk panjang yang tergolong famili Cerambycidae....

 

Kain endek Geringsing Endek adalah kain tenun yang berasal dari Bali. Kain endek merupakan hasil dari karya seni rupa terapan, yang berarti karya seni yang dapat diterapkan dalam kehidupan sehari-hari. Endek berasal dari kata gendekan atau ngendek yang berarti diam atau tetap, tidak berubah warnanya. Kegiatan menenun atau pertenunan endek di Bali dapat dijumpai di kabupaten Karangasem, Klungkung, Gianyar, Buleleng, Jembrana dan Kota Denpasar. Tenun ikat endek memiliki sebutan yang beragam di ...

 

Gunung Soufrière HillsTitik tertinggiKetinggian1.050 m (3.440 ft)Puncak1.050 m (3.440 ft)Koordinat16°43′N 62°11′W / 16.717°N 62.183°W / 16.717; -62.183Koordinat: 16°43′N 62°11′W / 16.717°N 62.183°W / 16.717; -62.183 GeografiLetakMontserrat, Kepulauan KaribiaNegara MontserratGeologiJenis gunungStratovolkanoBusur/sabuk vulkanikBusuk vulkanik antilles yang Lebih rendahLetusan terakhir2012Gunung Soufri...

Badan Pengembangan Sumber Daya Manusia Perhubungan Kementerian PerhubunganRepublik IndonesiaLogo BPSDM PerhubunganGambaran umumDibentuk1970; 54 tahun lalu (1970)Bidang tugasPengembangan SDM Transportasi di IndonesiaSloganBaktimu Telah Dinanti, Bangkitkan Semua Kemampuan Mari Kita Bangun Bangsa IniSusunan organisasiKepala BadanUmiyatun Hayati TriastutiSekretaris BadanM. Popik Montanasyah Kepala PusatPusat Pengembangan Sumber Daya Manusia Perhubungan DaratSuhartoPusat Pengembangan Sumber D...

 

Epsilon Draconis Lokasi ε Draconis (kiri atas). Data pengamatan Epos J2000      Ekuinoks J2000 Rasi bintang Draco Asensio rekta  19j 48m 10.3521d[1] Deklinasi  70° 16′ 04.549″[1] Magnitudo tampak (V) 3.9974[2] Ciri-ciri Kelas spektrum G8III+F5III [1] Indeks warna U−B +0.48[3] Indeks warna B−V +0.88 [3] AstrometriKecepatan radial (Rv)+3.1[1] km/sGer...

 

Academic journal about animal ethics The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Journal of Animal Ethics – news · newspapers · boo...

  دونيتسك (بالأوكرانية: Донецьк)‏    دونيتسك دونيتسك  خريطة الموقع سميت باسم جون هيوز،  ويوسف ستالين،  ونهر سيفيرسكي دونتس  تاريخ التأسيس 1869  تقسيم إداري البلد الإمبراطورية الروسية (–1 سبتمبر 1917) الاتحاد السوفيتي (6 يوليو 1923–24 أغسطس 1991) أوكرانيا (24 أغسطس ...

 

Swedish rock band For other uses of the word Cardigan, see Cardigan. The CardigansThe Cardigans performing in September 2006Background informationOriginJönköping, SwedenGenres Alternative rock pop rock indie rock indie pop[1] Years active1992–2006, 2012–presentLabelsMCA, Mercury, Minty Fresh, Stockholm, UniversalMembersLars-Olof JohanssonBengt LagerbergNina PerssonMagnus SveningssonPast membersPeter SvenssonWebsitewww.cardigans.com The Cardigans are a Swedish rock band formed in...

 

H.Slamet JunaidiS.IP Bupati Sampang ke-15Masa jabatan30 Januari 2019 – 30 Januari 2024PresidenJoko WidodoGubernurSoekarwo Khofifah Indar ParawansaWakilAbdullah HidayatPendahuluFadhilah Budiono Jonatan Judianto (Pj.)PenggantiRudi Arifiyanto (Pj.) Informasi pribadiLahir17 Agustus 1972 (umur 51)Sampang, Jawa TimurKebangsaanIndonesiaPartai politikNasDemSuami/istriMimin HaryatiAnak4Alma materSTISIP Syamsul Ulum SukabumiSunting kotak info • L • B H. Slamet Junaidi,...

Cet article possède un paronyme, voir Déclaration d'interdépendance. Déclaration d'indépendance des États-Unis imprimée sur un tissu, vers 1876. Une déclaration d'indépendance est l'assertion, écrite ou non, d'un territoire défini, de son indépendance et qu'il constitue par la suite un État. La déclaration d'indépendance implique la rupture d'un territoire avec le reste d'un État dont il ne souhaite plus faire partie. Les déclarations d'indépendance officialisent alors cett...

 

FormicolaKomuneComune di FormicolaLokasi Formicola di Provinsi CasertaNegaraItaliaWilayah CampaniaProvinsiCaserta (CE)Luas[1] • Total15,68 km2 (6,05 sq mi)Ketinggian[2]192 m (630 ft)Populasi (2016)[3] • Total1.504 • Kepadatan96/km2 (250/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos81040Kode area telepon0823Situs webhttp://www.comune.formicola.ce.it Formicola adalah ...

 

Стахановский трамвай Описание Страна Украина Расположение Стаханов, Ирмино, Алмазная Дата открытия 1937 Дата закрытия 2008 Маршрутная сеть Число маршрутов 0 Самый длинный маршрут Стаханов — Ирмино Подвижной состав Число вагонов 0 Число вагонов в период макс. развития 38 Ч...

Mordelles Plan du ciel de Mordelles. Blason Logo Administration Pays France Région Bretagne Département Ille-et-Vilaine Arrondissement Rennes Intercommunalité Rennes Métropole Maire Mandat Thierry Le Bihan (LREM) 2020-2026 Code postal 35310 Code commune 35196 Démographie Gentilé Mordelais Populationmunicipale 7 658 hab. (2021 en augmentation de 5,26 % par rapport à 2015) Densité 257 hab./km2 Population agglomération 395 710 hab. Géographie Coordonnées...

 

Tour de PiseTorre di PisaPrésentationType CampanileStyle Architecture romaneArchitecte Bonanno PisanoMatériau marbre et pierreConstruction 1173-1372Rénovation 1933-1935Hauteur 58,36 mDiamètre 14,95 m (extérieur) 9,52 m (intérieur)Inclinaison 5,1 °Propriétaire Opera della Primaziale Pisana (d)Patrimonialité Bien culturel italien (d)Partie d'un site du patrimoine mondial UNESCO (d)Visiteurs par an 215 099 (2021)Sites web (it) www.opapisa.it(en) www.opapisa.it/e...

 

Запрос «Черноморский флот» перенаправляется сюда; см. также другие значения. Черноморский флот Эмблема Черноморского флота Годы существования 13 (24) мая 1783 — н. в. Страна  Россия Подчинение Министерство обороны Российской Федерации Входит в ВМФ России Тип...

Бой под ВертингеномОсновной конфликт: Ульмская кампания Бой под Вертингеном Дата 8 октября 1805 года Место Вертинген, курфюршество Бавария (ныне Германия) Итог Победа французов Противники Французская империя Австрийская империя Командующие Йоахим Мюрат Жан Ланн Франц Ау...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 浜野清吾 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2013年2月) 日本の政治家浜野 清吾(はまの せいご)生年月...

 

French caricaturist and lithographer This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Amédée de Noé – news · newspapers · books · scholar · JSTOR (April 2020) French illustrator and caricaturist Amédée de Noé a.k.a. Cham (1818–1879) A Cham satire on women's fashions Charles Amédée de Noé,...

Football match2017 EFL League One play-off finalMillwall players celebrate promotion Bradford City Millwall 0 1 Date20 May 2017VenueWembley Stadium, LondonRefereeSimon Hooper (Wiltshire)Attendance53,320← 2016 2018 → The 2017 EFL League One play-off final was an association football match which was played on 20 May 2017 at Wembley Stadium, London, between Bradford City and Millwall to determine the third and final team to gain promotion from EFL League One to the EFL Championship....

 

2002 single by Oasis Little by LittleSingle by Oasisfrom the album Heathen Chemistry A-sideShe Is LoveB-sideMy GenerationReleased19 September 2002 (2002-09-19)GenreRockLength4:54LabelBig BrotherSongwriter(s)Noel GallagherProducer(s)OasisOasis singles chronology Stop Crying Your Heart Out (2002) Little by Little / She Is Love (2002) Songbird (2003) Music videoOasis - Little By Little (Official Video) on YouTube Little by Little is a song by English rock band Oasis, first release...