WASP-46 is a G-type main-sequence star about 1,210 light-years (370 parsecs) away. The star is older than the Sun and is strongly depleted in heavy elements compared to the Sun, having just 45% of the solar abundance.[2] Despite its advanced age, the star is rotating rapidly, being spun up by the tides raised by a giant planet on a close orbit.[6]
The star displays an excess ultraviolet emission associated with starspot activity,[7] and is suspected to be surrounded by a dust and debris disk.[8]
Planetary system
In 2011 a transiting hot superjovian planet, WASP-46b, was detected.[2] The planet's equilibrium temperature is 1636±44 K.[4] The dayside temperature measured in 2014 is much higher at 2386 K, indicating a very poor heat redistribution across the planet.[9] A re-measurement of the dayside planetary temperature in 2020 resulted in a lower value of 1870+130 −120K.[10]
In 2017, a search for transit-timing variations of WASP-46b yielded zero results, thus ruling out existence of additional gas giants in the system. The orbital decay of WASP-46b was also not detected.[11]
^ abcdAnderson, D. R.; Collier Cameron, A.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Queloz, D.; Smalley, B.; Smith, A. M. S.; Triaud, A. H. M. J.; West, R. G.; Pepe, F.; Pollacco, D.; Ségransan, D.; Todd, I.; Udry, S. (2012), "WASP-44b, WASP-45b and WASP-46b: three short-period, transiting extrasolar planets", Monthly Notices of the Royal Astronomical Society, 422 (3): 1988–1998, arXiv:1105.3179, Bibcode:2012MNRAS.422.1988A, doi:10.1111/j.1365-2966.2012.20635.x, S2CID34406657
^ abcCiceri, S.; Mancini, L.; Southworth, J.; Lendl, M.; Tregloan-Reed, J.; Brahm, R.; Chen, G.; d'Ago, G.; Dominik, M.; Figuera Jaimes, R.; Galianni, P.; Harpsøe, K.; Hinse, T. C.; Jørgensen, U. G.; Juncher, D.; Korhonen, H.; Liebig, C.; Rabus, M.; Bonomo, A. S.; Bott, K.; Henning, Th.; Jordán, A.; Sozzetti, A.; Alsubai, K. A.; Andersen, J. M.; Bajek, D.; Bozza, V.; Bramich, D. M.; Browne, P.; et al. (2016), "Physical properties of the planetary systems WASP-45 and WASP-46 from simultaneous multi-band photometry", Monthly Notices of the Royal Astronomical Society, 456 (1): 990–1002, arXiv:1511.05171, Bibcode:2016MNRAS.456..990C, doi:10.1093/mnras/stv2698, S2CID14670311
^Chen, G.; Van Boekel, R.; Wang, H.; Nikolov, N.; Seemann, U.; Henning, Th. (2014), "Observed spectral energy distribution of the thermal emission from the dayside of WASP-46b", Astronomy & Astrophysics, 567: A8, arXiv:1405.7048, doi:10.1051/0004-6361/201423795, S2CID119187817
^Wong, Ian; Shporer, Avi; Daylan, Tansu; Benneke, Björn; Fetherolf, Tara; Kane, Stephen R.; Ricker, George R.; Vanderspek, Roland; Latham, David W.; Winn, Joshua N.; Jenkins, Jon M.; Boyd, Patricia T.; Glidden, Ana; Goeke, Robert F.; Sha, Lizhou; Ting, Eric B.; Yahalomi, Daniel (2020), "Systematic phase curve study of known transiting systems from year one of the TESS mission", The Astronomical Journal, 160 (4): 155, arXiv:2003.06407, Bibcode:2020AJ....160..155W, doi:10.3847/1538-3881/ababad, S2CID212717799
^Petrucci, R.; Jofré, E.; Ferrero, L. V.; Cúneo, V.; Saker, L.; Lovos, F.; Gómez, M.; Mauas, P. (2018), "A search for transit timing variations and orbital decay in WASP-46b", Monthly Notices of the Royal Astronomical Society, 473 (4): 5126–5141, arXiv:1710.04707, Bibcode:2018MNRAS.473.5126P, doi:10.1093/mnras/stx2647, S2CID54509070