Von Kármán wind turbulence model

The von Kármán wind turbulence model (also known as von Kármán gusts) is a mathematical model of continuous gusts. It matches observed continuous gusts better than that Dryden Wind Turbulence Model[1] and is the preferred model of the United States Department of Defense in most aircraft design and simulation applications.[2] The von Kármán model treats the linear and angular velocity components of continuous gusts as spatially varying stochastic processes and specifies each component's power spectral density. The von Kármán wind turbulence model is characterized by irrational power spectral densities, so filters can be designed that take white noise inputs and output stochastic processes with the approximated von Kármán gusts' power spectral densities.

History

The von Kármán wind turbulence model first appeared in a 1957 NACA report[3] based on earlier work by Theodore von Kármán.[4][5][6]

Power spectral densities

The von Kármán model is characterized by single-sided power spectral densities for gusts' three linear velocity components (ug, vg, and wg),

where σi and Li are the turbulence intensity and scale length, respectively, for the ith velocity component, and Ω is a spatial frequency.[2] These power spectral densities give the stochastic process spatial variations, but any temporal variations rely on vehicle motion through the gust velocity field. The speed with which the vehicle is moving through the gust field V allows conversion of these power spectral densities to different types of frequencies,[7]

where ω has units of radians per unit time.

The gust angular velocity components (pg, qg, rg) are defined as the variations of the linear velocity components along the different vehicle axes,

though different sign conventions may be used in some sources. The power spectral densities for the angular velocity components are[8]

The military specifications give criteria based on vehicle stability derivatives to determine whether the gust angular velocity components are significant.[9]

Spectral factorization

The gusts generated by the von Kármán model are not a white noise process and therefore may be referred to as colored noise. Colored noise may, in some circumstances, be generated as the output of a minimum phase linear filter through a process known as spectral factorization. Consider a linear time invariant system with a white noise input that has unit variance, transfer function G(s), and output y(t). The power spectral density of y(t) is

where i2 = -1. For irrational power spectral densities, such as that of the von Kármán model, a suitable transfer function can be found whose magnitude squared evaluated along the imaginary axis approximates the power spectral density. The MATLAB documentation provides a realization of such a transfer function for von Kármán gusts that is consistent with the military specifications,[8]

Driving these filters with independent, unit variance, band-limited white noise yields outputs with power spectral densities that approximate the power spectral densities of the velocity components of the von Kármán model. The outputs can, in turn, be used as wind disturbance inputs for aircraft or other dynamic systems.[10]

Altitude dependence

The von Kármán model is parameterized by a length scale and turbulence intensity. The combination of these two parameters determine the shape of the power spectral densities and therefore the quality of the model's fit to spectra of observed turbulence. Many combinations of length scale and turbulence intensity give realistic power spectral densities in the desired frequency ranges.[1] The Department of Defense specifications include choices for both parameters, including their dependence on altitude.[11]

See also

Notes

  1. ^ a b Hoblit 1988, Chap. 4.
  2. ^ a b MIL-STD-1797A 1990, p. 678.
  3. ^ Diedrich, Franklin W.; Joseph A. Drischler (1957). "Effect of Spanwise Variations in Gust Intensity on the Lift Due to Atmospheric Turbulence": NACA TN 3920. {{cite journal}}: Cite journal requires |journal= (help)
  4. ^ de Kármán, Theodore; Leslie Howarth (1938). "On the Statistical Theory of Isotropic Turbulence". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 164 (917): 192–215. Bibcode:1938RSPSA.164..192D. doi:10.1098/rspa.1938.0013.
  5. ^ von Kármán, Theodore (1948). "Progress in the Statistical Theory of Turbulence". Proceedings of the National Academy of Sciences. 34 (11): 530–539. Bibcode:1948PNAS...34..530V. doi:10.1073/pnas.34.11.530. PMC 1079162. PMID 16588830.
  6. ^ von Kármán, T.; Lin, C. C. (1951). "On the Statistical Theory of Isotropic Turbulence". In von Mises, Richard; von Kármán, Theodore (eds.). Advances in Applied Mechanics. Academic Press, Inc. pp. 1–19. ISBN 9780080563800.
  7. ^ Hoblit 1988, p. ***.
  8. ^ a b "Von Karman Wind Turbulence Model (Continuous)". MATLAB Reference Pages. The MathWorks, Inc. 2010. Retrieved May 24, 2013.
  9. ^ MIL-STD-1797A 1990, p. 680.
  10. ^ Richardson 2013, p. 33.
  11. ^ MIL-STD-1797A 1990, pp. 673, 678–685, 702.

References

Read other articles:

Gymnocranius Gymnocranius griseus Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Kelas: Actinopterygii Ordo: Perciformes Famili: Lethrinidae Subfamili: Monotaxinae Genus: GymnocraniusKlunzinger, 1870 Spesies tipe Dentex rivulatusRüppell, 1838 Spesies Lihat teks Sinonim Paradentex Bleeker, 1872 Gymnocranius adalah genus ikan lencam yang berasal dari Samudera Hindia dan Samudera Pasifik bagian barat. Daftar Spesies[1] Gymnocranius audleyi J. D. Ogilby, 1916[1]...

 

Gua Kizil克孜尔千佛洞Gua KizilLokasi di XinjiangLokasiXinjiang, ChinaKoordinat41°47′N 82°30′E / 41.783°N 82.500°E / 41.783; 82.500Koordinat: 41°47′N 82°30′E / 41.783°N 82.500°E / 41.783; 82.500 Gua Kizil Nama Tionghoa Hanzi sederhana: 克孜尔千佛洞 Hanzi tradisional: 克孜爾千佛洞 Makna harfiah: Gua Seribu Buddha Kizil Alih aksara Mandarin - Hanyu Pinyin: Kèzī'ěr Qiānfú Dòng Nama Uighur Uighur: قىزىل م...

 

Museum AdityawarmanMuseum Nagari AdityawarmanDidirikan1977LokasiJl. Diponegoro No. 10, Belakang Tangsi, Padang Barat, Padang, IndonesiaJenisMuseum daerahUkuran koleksi6.000DirekturMardison, S.Pd., M.Pd. (Kepala UPTD Museum)[1]KuratorGubernur dan Wakil Gubernur Sumatera Barat[2]Situs webmuseumadityawarman.org Museum Adityawarman adalah museum budaya Sumatera Barat yang terletak di Kota Padang.[3] Museum ini diresmikan pada 16 Maret 1977 mengambil nama besar salah seoran...

Chronologies Couverture du Petit Journal, supplément illustré du 16 mai 1897, numéro 339, Incendie du Bazar de la Charité, le sinistre.Données clés 1894 1895 1896  1897  1898 1899 1900Décennies :1860 1870 1880  1890  1900 1910 1920Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, ...

 

4th century BCE emperor of the Indian Nanda Empire Mahapadma NandaA silver coin of 1 karshapana of King Mahapadma Nanda or his sons 4th century BCE1st Nanda EmperorReignc. 345 BC – 329 BCPredecessorMahanandinSuccessorPandukaDied329 BCEIssue8 sons (including Dhana)DynastyNandaFatherMahanandin Mahapadma Nanda (IAST: Mahāpadmānanda; c. mid 4th century BCE), (died 329 BCE) according to the Puranas, was the first Emperor of the Nanda Empire of ancient India. The Puranas describe him as a...

 

Buster WarenskiBorn(1942-06-05)June 5, 1942Kimberly, Nevada, U.S.DiedJuly 31, 2005(2005-07-31) (aged 63)Richfield, Utah, U.S.Occupation(s)Knifemaker, bladesmithSpouseJulie Warenski Art knife by Warenski Buster Warenski (June 5, 1942 – July 31, 2005) was an American custom knifemaker from Kimberly, Nevada who made Art Knives utilizing gold and other precious metals. Warenski is best known for making a reproduction of Tutankhamun's dagger with a forged gold blade; over 32 ounces of gold ...

51st season in existence of Paris Saint-Germainقالب:SHORTDESC:51st season in existence of Paris Saint-Germain باريس سان جيرمانموسم 2020–21الرئيسناصر الخليفيالمدربتوماس توخل(حتى 29 ديسمبر)ماوريسيو بوتشيتينو(ابتداء من 2 يناير)الملعببارك دي برينسالدوري الفرنسيالثانيكأس فرنساالفائزكأس الأبطال الفرنسيالفائزدوري أبطال أور...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Mzymta – news · newspapers · books · scholar · JSTOR (May 2020) (Learn how and when to remove this template message) River in Krasnodar Krai * Adlersky City District of Sochi, RussiaMzymta RiverMzymta from Maidens' Eyewater waterfallShow map of Krasnodar KraiSh...

 

Mustafa al-Kadhimiمصطفى الكاظميAl-Kadhimi pada Mei 2020 Perdana Menteri Irak ke-50Masa jabatan6 Mei 2020 – 28 Oktober 2022PresidenBarham SalihPendahuluAdil Abdul-MahdiPenggantiPetahanaMenteri Urusan Luar NegeriMasa jabatan12 Mei 2020 – 6 Juni 2020PendahuluMohamed Ali AlhakimPenggantiFuad HusseinDirektur INISMasa jabatan7 Juni 2016 – 9 April 2020PresidenFuad Masum Barham SalihPerdana MenteriHaider al-Abadi Adil Abdul-MahdiPendahuluZuheir Fadel Abbas...

Яичниковая артериялат. arteria ovarica Кровоснабжение женских репродуктивных органов Снабжает яичники, матка Берёт начало Брюшная аорта Каталоги FMATA98 Яичниковая артерия — разновидность гонадной артерии у женщин. Снабжает кровью яичники и матку.[1] Содержание 1 Топог�...

 

Данио-рерио Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёрые рыбыИн�...

 

Chronologies Données clés 1997 1998 1999  2000  2001 2002 2003Décennies :1970 1980 1990  2000  2010 2020 2030Siècles :XVIIIe XIXe  XXe  XXIe XXIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, République démocratique du Congo, Côte d'Ivoire, Djibouti, Égyp...

Portuguese singer and songwriter (born 1987) In this Portuguese name, the first or maternal family name is Vilar and the second or paternal family name is Braamcamp Sobral. Luísa SobralComMLuísa Sobral at the Eurovision Song Contest 2017 in KyivBackground informationBirth nameLuísa Vilar Braamcamp SobralBorn (1987-09-18) 18 September 1987 (age 36)Lisbon, PortugalGenrespopWebsiteluisasobral.comMusical artist Luísa Vilar Braamcamp Sobral ComM (Portuguese pronunciation: [luˈiz�...

 

For the homonymous party founded in 1976, see People's Party (Spain, 1976). Reformist Centre redirects here. For reformism in politics more generally, see Reformism. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and remo...

 

Indian politician (1914-2010) For other uses, see Jyoti Basu (disambiguation). ComradeJyoti Basu6th Chief Minister of West BengalIn office21 June 1977 – 5 November 2000Preceded byPresident's ruleSucceeded byBuddhadeb BhattacharjeeMember of the West Bengal Legislative AssemblyIn office1977–2001Preceded byNew constituencySucceeded bySonali GuhaConstituencySatgachhiaIn office1952–1972Preceded byNew constituencySucceeded byShiba Pada BhattacharjeeConstituencyBaranagar1st Deputy Chief Mi...

1807 Battle during the War of the Fourth Coalition For battles with the same name, see Battle of Ostrołęka. Battle of Ostrołęka (1807)Part of the War of the Fourth CoalitionMemorable combat of Ostrolenka, contemporary print in the Bibliothèque nationale de FranceDate16 February 1807[1]LocationOstrołęka, present-day Poland53°05′00″N 21°35′00″E / 53.083333°N 21.583333°E / 53.083333; 21.583333Result French victory[1]Belligerents French E...

 

بطولة باوليستا 1942 تفاصيل الموسم بطولة باوليستا  البلد البرازيل  البطل نادي بالميراس  عدد المشاركين 11   بطولة باوليستا 1941  بطولة باوليستا 1943  تعديل مصدري - تعديل   بطولة باوليستا 1942 هو موسم من بطولة باوليستا. أشرف على تنظيمه Federação Paulista de Futebol [الإنجليزية]&...

 

Practice of supernatural beings and forces This article is about beliefs and actions employed to influence supernatural beings and forces. For illusionism or stage magic, see Magic (illusion). The Magician, an illustration from the Rider–Waite tarot deck first published in 1910 Part of a series onMagic Background History of magic Magic and religion Psychological theories of magic Forms Apotropaic magic Black magic Ceremonial magic Chaos magic Divination Evocation Goetia Gray magic Invocatio...

HMAS Kanimbla pada 2010. Sebuah helikopter Sea King sedang mendarat di geladak belakangnya Sejarah United States Nama SaginawAsal nama City of Saginaw, MichiganPembangun National Steel & Shipbuilding CompanyPasang lunas 24 May 1969Diluncurkan 7 February 1970Sponsor Wife of R. James HarveyMulai berlayar 23 January 1971Dipensiunkan 28 June 1994Pelabuhan daftar Little Creek, VirginiaIdentifikasi LST-1188Nasib Transferred to the Royal Australian Navy in 1994 Australia Nama KanimblaAsal nama ...

 

Eleanor SangerSanger in 1961BornMary Eleanor Sanger(1929-09-15)September 15, 1929Hong KongDiedMarch 7, 1993(1993-03-07) (aged 63)Tisbury, MassachusettsNationalityAmericanEducationSmith College, Columbia UniversityKnown forTelevision Producer, Sports, WritingMovementWomen's Sports, Women in TelevisionAwards7 Emmy Awards, Smith College Medal Eleanor Sanger (September 15, 1929 – March 7, 1993) was a 7-time Emmy-award-winning television writer and producer, who was the first woman...