The point of the projective plane (modulo permutations) corresponding to a simple complex Lie algebra is given by three eigenvalues α, β, γ of the Casimir operator acting on spaces A, B, C, where the symmetric square of the Lie algebra (usually) decomposes as a sum of the complex numbers and 3 irreducible spaces A, B, C.
Deligne, Pierre (1996), "La série exceptionnelle de groupes de Lie", Comptes Rendus de l'Académie des Sciences, Série I, 322 (4): 321–326, ISSN0764-4442, MR1378507