Unscented optimal control
Mathematics concept
In mathematics, unscented optimal control combines the notion of the unscented transform with deterministic optimal control to address a class of uncertain optimal control problems.[ 1] [ 2] [ 3] [ 4] It is a specific application of tychastic optimal control theory,[ 1] [ 5] [ 6] [ 7] which is a generalization of Riemmann-Stieltjes optimal control theory,[ 8] [ 9] a concept introduced by Ross and his coworkers.
Mathematical description
Suppose that the initial state
x
0
{\displaystyle x^{0}}
of a dynamical system,
x
˙ ˙ -->
=
f
(
x
,
u
,
t
)
{\displaystyle {\dot {x}}=f(x,u,t)}
is an uncertain quantity. Let
X
i
{\displaystyle \mathrm {X} ^{i}}
be the sigma points . Then sigma-copies of the dynamical system are given by,
X
˙ ˙ -->
i
=
f
(
X
i
,
u
,
t
)
{\displaystyle {\dot {\mathrm {X} }}^{i}=f(\mathrm {X} ^{i},u,t)}
Applying standard deterministic optimal control principles to this ensemble generates an unscented optimal control.[ 10] [ 11] [ 12] Unscented optimal control is a special case of tychastic optimal control theory.[ 1] [ 5] [ 13] According to Aubin[ 13] and Ross,[ 1] tychastic processes differ from stochastic processes in that a tychastic process is conditionally deterministic.
Applications
Unscented optimal control theory has been applied to UAV guidance,[ 12] [ 14] spacecraft attitude control,[ 6] air-traffic control[ 15] and low-thrust trajectory optimization[ 2] [ 10]
References
^ a b c d Ross, Isaac (2015). A primer on Pontryagin's principle in optimal control . San Francisco: Collegiate Publishers. pp. 75– 82. ISBN 978-0-9843571-1-6 .
^ a b Ross, I. Michael; Proulx, Ronald; Karpenko, Mark (August 4–7, 2014). Unscented Optimal Control for Orbital and Proximity Operations in an Uncertain Environment: A New Zermelo Problem . AIAA/AAS Astrodynamics Specialist Conference. San Diego, CA: American Institute of Aeronautics and Astronautics. doi :10.2514/6.2014-4423 . Retrieved August 23, 2024 .
^ Ross et al, Unscented Control for Uncertain Dynamical Systems, US Patent US 9,727,034 Bl. Issued Aug 8, 2017.
https://calhoun.nps.edu/bitstream/handle/10945/55812/USPN%209727034.pdf?sequence=1&isAllowed=y
^ Manchester, Zachary; Kuindersma, Scott (December 2016). "Derivative-free trajectory optimization with unscented dynamic programming" . 2016 IEEE 55th Conference on Decision and Control (CDC) . IEEE. pp. 3642– 3647. doi :10.1109/cdc.2016.7798817 . ISBN 978-1-5090-1837-6 .
^ a b Ross, I. Michael; Karpenko, Mark; Proulx, Ronald J. (July 2016). "Path constraints in tychastic and unscented optimal control: Theory, application and experimental results" . 2016 American Control Conference (ACC) . IEEE. pp. 2918– 2923. doi :10.1109/acc.2016.7525362 . ISBN 978-1-4673-8682-1 . S2CID 1123147 .
^ a b Ross, I. M.; Karpenko, M.; Proulx, R. J. (July 2016). "Path constraints in tychastic and unscented optimal control: Theory, application and experimental results" . 2016 American Control Conference (ACC) . pp. 2918– 2923. doi :10.1109/acc.2016.7525362 . ISBN 978-1-4673-8682-1 . S2CID 1123147 .
^ Ross, I. M.; Proulx, R. J.; Karpenko, M. (2024-05-04). "Unscented Trajectory Optimization". arXiv :2405.02753 [math.OC ].
^ Ross, I. Michael; Karpenko, Mark; Proulx, Ronald J. (2015). "Riemann-Stieltjes Optimal Control Problems for Uncertain Dynamic Systems" . Journal of Guidance, Control, and Dynamics . 38 (7). AIAA: 1251– 1263. Bibcode :2015JGCD...38.1251R . doi :10.2514/1.G000505 . hdl :10945/48189 . S2CID 121424228 .
^ Karpenko, Mark; Proulx, Ronald J. (2016). "Experimental Implementation of Riemann–Stieltjes Optimal Control for Agile Imaging Satellites" . Journal of Guidance, Control, and Dynamics . 39 (1): 144– 150. Bibcode :2016JGCD...39..144K . doi :10.2514/1.g001325 . hdl :10945/50355 . ISSN 0731-5090 . S2CID 116887441 .
^ a b Ozaki, Naoya; Funase, Ryu (January 8–12, 2018). Tube Stochastic Differential Dynamic Programming for Robust Low-Thrust Trajectory Optimization Problems . 2018 AIAA Guidance, Navigation, and Control Conference. Kissimmee, Florida. doi :10.2514/6.2018-0861 .
^ "Robust Differential Dynamic Programming for Low-Thrust Trajectory Design: Approach with Robust Model Predictive Control Technique" (PDF) .
^ a b Shaffer, R.; Karpenko, M.; Gong, Q. (July 2016). "Unscented guidance for waypoint navigation of a fixed-wing UAV" . 2016 American Control Conference (ACC) . pp. 473– 478. doi :10.1109/acc.2016.7524959 . ISBN 978-1-4673-8682-1 . S2CID 11741951 .
^ a b Aubin, Jean-Pierre; Saint-Pierre, Patrick (2008). "A Tychastic Approach to Guaranteed Pricing and Management of Portfolios under Transaction Constraints" . Seminar on Stochastic Analysis, Random Fields and Applications V . Progress in Probability. Vol. 59. Basel: Birkhäuser Basel. pp. 411– 433. doi :10.1007/978-3-7643-8458-6_22 . ISBN 978-3-7643-8457-9 . Retrieved 2020-12-23 .
^ Ross, I. M.; Proulx, R. J.; Karpenko, M. (July 2015). "Unscented guidance" . 2015 American Control Conference (ACC) . pp. 5605– 5610. doi :10.1109/acc.2015.7172217 . ISBN 978-1-4799-8684-2 . S2CID 28136418 .
^ Ng, Hok Kwan (2020-06-08). "Strategic Planning with Unscented Optimal Guidance for Urban Air Mobility" . AIAA Aviation 2020 Forum . American Institute of Aeronautics and Astronautics. doi :10.2514/6.2020-2904 . ISBN 978-1-62410-598-2 . S2CID 225658104 . Retrieved 2020-12-23 .