This test assumes that the Xi have a continuous distribution (so adjacent values are almost surely never equal).[4]
Test statistic
We say i is a turning point if the vector X1, X2, ..., Xi, ..., Xn is not monotonic at index i. The number of turning points is the number of maxima and minima in the series.[4]
Letting T be the number of turning points, then for large n, T is approximately normally distributed with mean (2n − 4)/3 and variance (16n − 29)/90. The test statistic[7]
is approximately standard normal for large values of n.
Applications
The test can be used to verify the accuracy of a fitted time series model such as that describing irrigation requirements.[8]
^Brockwell, Peter J; Davis, Richard A, eds. (2002). Introduction to Time Series and Forecasting. Springer Texts in Statistics. doi:10.1007/b97391. ISBN978-0-387-95351-9.
^ abcdHeyde, C. C.; Seneta, E. (1972). "Studies in the History of Probability and Statistics. XXXI. The simple branching process, a turning point test and a fundamental inequality: A historical note on I. J. Bienaymé". Biometrika. 59 (3): 680. doi:10.1093/biomet/59.3.680.
^Kendall, M. G.; Stuart, A. (1968). The Advanced Theory of Statistics, Volume 3: Design and Analysis, and Time-Series (2nd ed.). London: Griffin. pp. 361–2. ISBN0-85264-069-2.
^Gupta, R. K.; Chauhan, H. S. (1986). "Stochastic Modeling of Irrigation Requirements". Journal of Irrigation and Drainage Engineering. 112: 65–76. doi:10.1061/(ASCE)0733-9437(1986)112:1(65).