Instead of a single orbitingcharge, the toroidal ring was conceived as a collection of infinitesimal charge elements, which orbited or circulated along a common continuous path or "loop". In general, this path of charge could assume any shape, but tended toward a circular form due to internal repulsive electromagnetic forces. In this configuration the charge elements circulated, but the ring as a whole did not radiate due to changes in electric or magneticfields since it remained stationary. The ring produced an overall magnetic field ("spin") due to the current of the moving charge elements. These elements circulated around the ring at the speed of lightc, but at frequencyν = c/2πR, which depended inversely on the radiusR. The ring's inertialenergy increased when compressed, like a spring, and was also inversely proportional to its radius, and therefore proportional to its frequency ν. The theory claimed that the proportionality constant was the Planck constanth, the conserved angular momentum of the ring.
According to the model, electrons or protons could be viewed as bundles of "fibers" or "plasmoids" with total charge ±e. The electrostatic repulsion force between charge elements of the same sign was balanced by the magnetic attraction force between the parallelcurrents in the fibers of a bundle, per Ampère's law. These fibers twisted around the torus of the ring as they progressed around its radius, forming a Slinky-like helix. Circuit completion demanded that each helical plasmoid fiber twisted around the ring an integer number of times as it proceeded around the ring. This requirement was thought to account for "quantum" values of angular momentum and radiation. Chirality demanded the number of fibers to be odd, probably three, like a rope. The helicity of the twist, was thought to distinguish the electron from the proton.
The toroidal or "helicon" model did not demand a constant radius or inertial energy for a particle. In general its shape, size, and motion adjusted according to the external electromagnetic fields from its environment. These adjustments or reactions to external field changes constituted the emission or absorption of radiation for the particle. The model, then, claimed to explain how particles linked together to form atoms.
The aspect of the Parson magneton with the most experimental relevance (and the aspect investigated by Grondahl and Webster) was the existence of an electron magnetic dipole moment; this dipole moment is indeed present. However, later work by Paul Dirac and Alfred Landé showed that a pointlike particle could have an intrinsic quantum spin, and also a magnetic moment. The highly successful modern theory, Standard Model of particle physics describes a pointlike electron with an intrinsic spin and magnetic moment. On the other hand, the usual assertion that an electron is pointlike may be conventionally associated only with a "bare" electron. The pointlike electron would have a diverging electromagnetic field, which should create a strong vacuum polarization. In accordance with QED, deviations from the Coulomb law are predicted at Compton scale distances from the centre of electron, 10−11 cm. Virtual processes in the Compton region determine the spin of electron and renormalization of its charge and mass. It shows that the Compton region of the electron should be considered as a coherent whole with its pointlike core, forming a physical ("dressed") electron. Notice that the Dirac theory of electron also exhibits the peculiar behaviour of the Compton region. In particular, electrons display zitterbewegung at the Compton scale. From this point of view, the ring model does not contradict QED or the Dirac theory and some versions could possibly be used to incorporate gravity in quantum theory.
The question of whether the electron has a substructure of any sort must be decided by experiment. All experiments to date agree with the Standard Model of the electron, with no substructure, ring-like or otherwise. The two major approaches are high-energy electron–positron scattering[24] and high-precision atomic tests of quantum electrodynamics,[25] both of which agree that the electron is point-like at resolutions down to 10−20 m. At present, the Compton region of virtual processes, 10−11 cm across, is not exhibited in the high-energy experiments on electron–positron scattering.
Nikodem Popławski use the Papapetrou method of multipole expansion to show that torsion modifies Burinskii’s model of the Dirac electron by replacing the Kerr–Newman singular ring of the Compton size with a toroidal structure with the outer radius of the Compton size and the inner radius of the Cartan size (10−27 m) in the Einstein–Cartan theory of gravity.[26]
^Alfred L. Parson, "A Magneton Theory of the Structure of the Atom", Smithsonian Miscellaneous Collection, Pub 2371, 80pp (Nov 1915) {Reprinted Pub 2419, V65, N11 (1916)}.
^Leigh Page, "The Distribution of Energy in the Normal Radiation Spectrum", Physical Review, S2, V7, N2, pp. 229–240 (Feb 1916).
^David L. Webster, "The Theory of Electromagnetic Mass of the Parson Magneton and other Non-Spherical Systems", Physical Review, S2, V9, N6, pp. 484–499 (Jun 1917).
^David L. Webster, "The Scattering of Alpha Rays as Evidence on the Parson Magnetron Hypothesis", Physical Review, S2 (Feb 1918).
^Lars O. Grondahl, "Proceedings of the American Physical Society: Experimental Evidence for the Parson Magneton", Physical Review, S2, V10, N5, pp. 586–588 (Nov 1917).
^D. Bourilkov, "Hint for axial-vector contact interactions in the data on e+e− → e+e−(γ) at center-of-mass energies 192–208 GeV", Phys. Rev. D 64, 071701 (2001), Physical Review Online Archive.
^B. Odom, D. Hanneke, B. D'Urso, and G. Gabrielse, New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron, Phys. Rev. Lett. 97, 030801 (2006), PHYSICAL REVIEW LETTERS.
David L. Bergman, J. Paul Wesley ; Spinning Charged Ring Model of Electron Yielding Anomalous Magnetic Moment, Galilean Electrodynamics. Vol. 1, 63-67 (Sept./Oct. 1990).