Thom space

In mathematics, the Thom space, Thom complex, or Pontryagin–Thom construction (named after René Thom and Lev Pontryagin) of algebraic topology and differential topology is a topological space associated to a vector bundle, over any paracompact space.

Construction of the Thom space

One way to construct this space is as follows. Let

be a rank n real vector bundle over the paracompact space B. Then for each point b in B, the fiber is an n-dimensional real vector space. We can form an n-sphere bundle by taking the one-point compactification of each fiber and gluing them together to get the total space.[further explanation needed] Finally, from the total space we obtain the Thom space as the quotient of by B; that is, by identifying all the new points to a single point , which we take as the basepoint of . If B is compact, then is the one-point compactification of E.

For example, if E is the trivial bundle , then is and, writing for B with a disjoint basepoint, is the smash product of and ; that is, the n-th reduced suspension of .

Alternatively,[citation needed] since B is paracompact, E can be given a Euclidean metric and then can be defined as the quotient of the unit disk bundle of E by the unit -sphere bundle of E.

The Thom isomorphism

The significance of this construction begins with the following result, which belongs to the subject of cohomology of fiber bundles. (We have stated the result in terms of coefficients to avoid complications arising from orientability; see also Orientation of a vector bundle#Thom space.)

Let be a real vector bundle of rank n. Then there is an isomorphism called a Thom isomorphism

for all k greater than or equal to 0, where the right hand side is reduced cohomology.

This theorem was formulated and proved by René Thom in his famous 1952 thesis.

We can interpret the theorem as a global generalization of the suspension isomorphism on local trivializations, because the Thom space of a trivial bundle on B of rank k is isomorphic to the kth suspension of , B with a disjoint point added (cf. #Construction of the Thom space.) This can be more easily seen in the formulation of the theorem that does not make reference to Thom space:

Thom isomorphism —  Let be a ring and be an oriented real vector bundle of rank n. Then there exists a class

where B is embedded into E as a zero section, such that for any fiber F the restriction of u

is the class induced by the orientation of F. Moreover,

is an isomorphism.

In concise terms, the last part of the theorem says that u freely generates as a right -module. The class u is usually called the Thom class of E. Since the pullback is a ring isomorphism, is given by the equation:

In particular, the Thom isomorphism sends the identity element of to u. Note: for this formula to make sense, u is treated as an element of (we drop the ring )

[1]

The standard reference for the Thom isomorphism is the book by Bott and Tu.

Significance of Thom's work

In his 1952 paper, Thom showed that the Thom class, the Stiefel–Whitney classes, and the Steenrod operations were all related. He used these ideas to prove in the 1954 paper Quelques propriétés globales des variétés differentiables that the cobordism groups could be computed as the homotopy groups of certain Thom spaces MG(n). The proof depends on and is intimately related to the transversality properties of smooth manifolds—see Thom transversality theorem. By reversing this construction, John Milnor and Sergei Novikov (among many others) were able to answer questions about the existence and uniqueness of high-dimensional manifolds: this is now known as surgery theory. In addition, the spaces MG(n) fit together to form spectra MG now known as Thom spectra, and the cobordism groups are in fact stable. Thom's construction thus also unifies differential topology and stable homotopy theory, and is in particular integral to our knowledge of the stable homotopy groups of spheres.

If the Steenrod operations are available, we can use them and the isomorphism of the theorem to construct the Stiefel–Whitney classes. Recall that the Steenrod operations (mod 2) are natural transformations

defined for all nonnegative integers m. If , then coincides with the cup square. We can define the ith Stiefel–Whitney class of the vector bundle by:

Consequences for differentiable manifolds

If we take the bundle in the above to be the tangent bundle of a smooth manifold, the conclusion of the above is called the Wu formula, and has the following strong consequence: since the Steenrod operations are invariant under homotopy equivalence, we conclude that the Stiefel–Whitney classes of a manifold are as well. This is an extraordinary result that does not generalize to other characteristic classes. There exists a similar famous and difficult result establishing topological invariance for rational Pontryagin classes, due to Sergei Novikov.

Thom spectrum

Real cobordism

There are two ways to think about bordism: one as considering two -manifolds are cobordant if there is an -manifold with boundary such that

Another technique to encode this kind of information is to take an embedding and considering the normal bundle

The embedded manifold together with the isomorphism class of the normal bundle actually encodes the same information as the cobordism class . This can be shown[2] by using a cobordism and finding an embedding to some which gives a homotopy class of maps to the Thom space defined below. Showing the isomorphism of

requires a little more work.[3]

Definition of Thom spectrum

By definition, the Thom spectrum[4] is a sequence of Thom spaces

where we wrote for the universal vector bundle of rank n. The sequence forms a spectrum.[5] A theorem of Thom says that is the unoriented cobordism ring;[6] the proof of this theorem relies crucially on Thom’s transversality theorem.[7] The lack of transversality requires that alternative methods be found to compute cobordism rings of, say, topological manifolds from Thom spectra.

See also

Notes

  1. ^ Proof of the isomorphism. We can embed B into either as the zero section; i.e., a section at zero vector or as the infinity section; i.e., a section at infinity vector (topologically the difference is immaterial.) Using two ways of embedding we have the triple:
    .
    Clearly, deformation-retracts to B. Taking the long exact sequence of this triple, we then see:
    the latter of which is isomorphic to:
    by excision.
  2. ^ "Thom's theorem" (PDF). Archived (PDF) from the original on 17 Jan 2021.
  3. ^ "Transversality" (PDF). Archived (PDF) from the original on 17 Jan 2021.
  4. ^ See pp. 8-9 in Greenlees, J. P. C. (2006-09-15). "Spectra for commutative algebraists". arXiv:math/0609452.
  5. ^ Francis, J. "Math 465, lecture 2: cobordism" (PDF). Notes by O. Gwilliam. Northwestern University.
  6. ^ Stong 1968, p. 18
  7. ^ Francis, J. "Math 465, lecture 4: transversality" (PDF). Notes by I. Bobovka. Northwestern University.

References

Read other articles:

Fujimi Fantasia Bunko富士見ファンタジア文庫Perusahaan indukKadokawa CorporationDidirikan1988; 36 tahun lalu (1988)PendiriFujimi ShoboNegara asalJepangJenis terbitanNovel ringanSitus resmifantasiabunko.jp Fujimi Fantasia Bunko (富士見ファンタジア文庫code: ja is deprecated , Fujimi Fantajia Bunko) adalah penerbit novel ringan yang berafiliasi dengan perusahaan penerbitan Jepang, Fujimi Shobo, sebuah perusahaan merek dari Kadokawa Corporation. Perusahaan ini didirikan ...

 

Pour les articles homonymes, voir Dix-Neuf-Janvier. Éphémérides Janvier 1er 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31         19 décembre 19 février Chronologies thématiques Croisades Ferroviaires Sports Disney Anarchisme Catholicisme Abréviations / Voir aussi (° 1852) = né en 1852 († 1885) = mort en 1885 a.s. = calendrier julien n.s. = calendrier grégorien Calendrier Calendrier perpétuel Liste de calendriers Naissances...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Leksis (bahasa Yunani Kuno: λέξις / kata) merupakan himpunan kata tertentu yang diklasifikasikan menurut beberapa kriteria linguistik tertentu. Kata sifat leksis disebut leksikal.[1] Sedangkan leksikologi adalah sebutan untuk cabang studi ...

Village in Maharashtra This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (January 2018) Village in Maharashtra, IndiaDilmeshwarvillageCountry IndiaStateMaharashtraDistrictSolapur districtLanguages • OfficialMarathiTime zoneUTC+5:30 (IST) Dilmeshwar is a village in the Karmala taluka of Solapur district in Maharashtra state, India. Demographics Covering 311 hectares (77...

 

This article is about a competitive event for hunting dogs. For a scientific examination of an intervention in the real world, see field experiment. A field trial meeting at Bala, North Wales by George Earl A field trial is a competitive event for gun dogs. Field trials are conducted for pointing dogs and setters, retrievers and spaniels, with each assessing the different types various working traits. In the United States, field trials are also conducted for basset hounds, beagles, and dachsh...

 

Pour les articles homonymes, voir Ikeda. Ikeda TomomasaBiographieNaissance 1544Décès 17 avril 1604Nom dans la langue maternelle 池田知正Activité SamouraïPère Ikeda NagamasaFratrie Ikeda Mitsushige (d)Parentèle Ikeda Sankurō (d) (fils adoptif)modifier - modifier le code - modifier Wikidata Ikeda Tomomasa (池田 知正?, 1544-1603) est un kokujin et commandant militaire de l'époque Azuchi Momoyama. Il est le deuxième fils d'Ikeda Nagamasa, lui-même important kokujin dans la...

Herbert Spencer GasserLahir5 Juli 1888Platteville, WisconsinMeninggal11 Mei 1963KebangsaanAmerika SerikatAlmamaterUniversitas Wisconsin-Madison Universitas Johns HopkinsDikenal atasPotensial aksiPenghargaanPenghargaan Nobel dalam Fisiologi atau Kedokteran (1944)Karier ilmiahBidangFisiologiInstitusiUniversitas RockefellerUniversitas Washington di St. Louis Herbert Spencer Gasser (5 Juli 1888 – 11 Mei 1963) ialah fisiolog Amerika Serikat keturunan Yahudi Austria-Jerman Rusia. G...

 

Plant hormone Native auxinsIndole-3-acetic acid (IAA) is the most abundant and the basic auxin natively occurring and functioning in plants. It generates the majority of auxin effects in intact plants, and is the most potent native auxin. There are four more endogenously synthesized auxins in plants.[1][2]All auxins are compounds with aromatic ring and a carboxylic acid group:[2][3]4-Chloroindole-3-acetic acid (4-CI-IAA)2-phenylacetic acid (PAA)Indole-3-butyric...

 

HMS ManchesterDescrizione generale TipoIncrociatore leggero ClasseTown Proprietà Royal Navy IdentificazioneC15 CostruttoriHawthorn Leslie and Company CantiereHebburn Impostazione28 marzo 1936 Varo12 aprile 1937 Entrata in servizio4 agosto 1938 Destino finaleAffondata il 13 agosto 1942 al largo della Tunisia Caratteristiche generaliStazza lorda11.930 tsl Lunghezza180,3 m Larghezza19,7 m Pescaggio6,2 m PropulsioneTurbine a riduzione ParsonsQuattro caldaie AdmiraltyQuattro el...

Pour les articles homonymes, voir Bréhain et Château-Bréhain. Bréhain-la-Ville Église paroissiale Saint-Denis. Blason Administration Pays France Région Grand Est Département Meurthe-et-Moselle Arrondissement Briey Intercommunalité Communauté de communes Cœur du Pays-Haut Maire Mandat Berardino Pallotta 2020-2026 Code postal 54190 Code commune 54096 Démographie Gentilé Bréhinois [1] Populationmunicipale 445 hab. (2021 ) Densité 44 hab./km2 Géographie Coordonnées 49°...

 

Raniero Capoccicardinale di Santa Romana ChiesaCarlo Saraceni, Raniero Capocci (fine '500/inizi '600); olio su tela, coll. Longhi, Firenze  Incarichi ricopertiCardinale diacono di Santa Maria in Cosmedin  Nato1180/1190 a Viterbo Creato cardinale1216 da papa Innocenzo III Deceduto27 maggio 1250 a Lione   Manuale Raniero Capocci, o Rainerio da Viterbo (Viterbo, 1180/1190 – Lione, 27 maggio 1250), è stato un cardinale italiano, creato da papa Innocenzo III. È famoso per essere...

 

American keyboardist and composer Steve PorcaroPorcaro in 2013Background informationBirth nameSteven Maxwell PorcaroBorn (1957-09-02) September 2, 1957 (age 66)Hartford, Connecticut, U.S.GenresPop, rockOccupationsMusician, songwriter, film composerInstrumentsKeyboards, vocalsYears active1976–presentFormerly ofToto, The Chris Squire ExperimentMusical artist Steven Maxwell Porcaro (born September 2, 1957) is an American keyboardist, songwriter, singer, and film composer, known as one of ...

Video game genre Part of a series onAction games Subgenres Action-adventure Metroidvania Battle royale Fighting Beat 'em up Hack and slash Platform fighter Platform Rhythm Action RPG Shooter Artillery Arena First-person Hero Light gun Third-person Tactical Shoot 'em up Bullet hell Twin-stick Sports Racing Stealth Survival Vehicle sim Topics Capture the flag Cover system First-person shooter engine Free look Quick time event WASD keys Lists List of battle royale games List of beat 'em ups List...

 

Disambiguazione – SIAE rimanda qui. Se stai cercando il servizio di manutenzione aeronautica dell'Armée de l'air, vedi Service industriel de l'aéronautique. Società Italiana degli Autori ed EditoriLogo Sede centrale a Roma EUR Stato Italia Forma societariaEnte pubblico economico Fondazione23 aprile 1882 a Milano Sede principaleRoma Persone chiave Giulio Rapetti Mogol (presidente onorario) Salvatore Nastasi (presidente) Matteo Fedeli (direttore generale) SettoreCorrespon...

 

Pemilihan umum Presiden Amerika Serikat 1948194419522 November 1948531 suara elektoral di kolese elektoral266 elektoral untuk menangKehadiran pemilih53.0%[1] 2.9 ppKandidat   Calon Harry S. Truman Thomas E. Dewey Strom Thurmond Partai Demokrat Republik Dixiecrat Negara bagian Missouri New York South Carolina Pendamping Alben W. Barkley Earl Warren Fielding L. Wright Suara elektoral 303 189 39 Negara bagian 28 16 4 Suara rakyat 24,179,347 21,991,292 1,175,930 ...

Men's national association football team representing the Comoros This article is about the men's team. For the women's team, see Comoros women's national football team. ComorosNickname(s)Les Coelacantes (The Coelacanths)AssociationFédération de Football de Comores (FFC)ConfederationCAF (Africa)Sub-confederationCOSAFA (Southern Africa)Head coachStefano CusinCaptainNadjim AbdouMost capsYoussouf M'Changama (60)Top scorerBen Nabouhane (17)Home stadiumStade Omnisports de MalouziniFIFA codeCOM F...

 

2010 United States Shadow Representative election in the District of Columbia ← 2008 November 2, 2010 2012 → Turnout30.0% 32.5 pp[1]   Nominee Mike Panetta Nelson Rimensnyder Joyce Robinson-Paul Party Democratic Republican DC Statehood Green Popular vote 101,207 11,094 9,489 Percentage 82.4% 9.0% 7.7% Ward results Precinct resultsPanetta:      50–60%      60–70%      70–80...

 

Wild AnimalsPoster Film Promosi Wild AnimalsNama lainHangul야생동물 보호구역 Hanja野生動物 保護區域 Alih Aksara yang DisempurnakanYasaeng dongmul bohoguyeogMcCune–ReischauerYasaeng tongmul pohoguyŏg SutradaraKi-duk KimProduserKwon Ki-yeong Park Kwang-suDitulis olehKi-duk KimPemeranCho Jae-hyun Jang Dong-jik Jang RyunPenata musikKang In-gu Oh Jin-haSinematograferSeo Jeong-minPenyuntingPark Seon-deokDistributorDream CinemaTanggal rilis 1996 (1996) NegaraKorea...

For other uses, see Crosby (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Crosby, Merseyside – news · newspapers · books · scholar · JSTOR (February 2008) (Learn how and when to remove this message) Town in EnglandCrosbyTownCrown Buildings, CrosbyCrosbyLocation within MerseysidePopulation5...

 

This article is about the Italian comune. For the American actress, see Jill Latiano. Comune in Apulia, ItalyLatianoComuneComune di Latiano Coat of armsLocation of Latiano LatianoLocation of Latiano in ItalyShow map of ItalyLatianoLatiano (Apulia)Show map of ApuliaCoordinates: 40°32′N 17°43′E / 40.533°N 17.717°E / 40.533; 17.717CountryItalyRegionApuliaProvinceBrindisi (BR)Government • MayorCosimo MaioranoArea[1] • Total54 km...