Some authors consider an o-minimal structure to be a candidate for realizing tame topology in the real case.[3][4] There are also some other suggestions.[5]
^Alexander Grothendieck, 1984. "Esquisse d'un Programme", (1984 manuscript), finally published in Schneps and Lochak (1997, I), pp.5-48; English transl., ibid., pp. 243-283. MR1483107
A'Campo, Norbert; Ji, Lizhen; Papadopoulos, Athanase (2016). "On Grothendieck's tame topology". Handbook of Teichmüller Theory, Volume VI. IRMA Lectures in Mathematics and Theoretical Physics. Vol. 27. pp. 521–533. arXiv:1603.03016. doi:10.4171/161-1/17. ISBN978-3-03719-161-3. S2CID119693048.