Szpiro's conjecture

Modified Szpiro conjecture
FieldNumber theory
Conjectured byLucien Szpiro
Conjectured in1981
Equivalent toabc conjecture
Consequences

In number theory, Szpiro's conjecture relates to the conductor and the discriminant of an elliptic curve. In a slightly modified form, it is equivalent to the well-known abc conjecture. It is named for Lucien Szpiro, who formulated it in the 1980s. Szpiro's conjecture and its equivalent forms have been described as "the most important unsolved problem in Diophantine analysis" by Dorian Goldfeld,[1] in part to its large number of consequences in number theory including Roth's theorem, the Mordell conjecture, the Fermat–Catalan conjecture, and Brocard's problem.[2][3][4][5]

Original statement

The conjecture states that: given ε > 0, there exists a constant C(ε) such that for any elliptic curve E defined over Q with minimal discriminant Δ and conductor f,

Modified Szpiro conjecture

The modified Szpiro conjecture states that: given ε > 0, there exists a constant C(ε) such that for any elliptic curve E defined over Q with invariants c4, c6 and conductor f (using notation from Tate's algorithm),

abc conjecture

The abc conjecture originated as the outcome of attempts by Joseph Oesterlé and David Masser to understand Szpiro's conjecture,[6] and was then shown to be equivalent to the modified Szpiro's conjecture.[7]

Consequences

Szpiro's conjecture and its modified form are known to imply several important mathematical results and conjectures, including Roth's theorem,[8] Faltings's theorem,[9] Fermat–Catalan conjecture,[10] and a negative solution to the Erdős–Ulam problem.[11]

Claimed proofs

In August 2012, Shinichi Mochizuki claimed a proof of Szpiro's conjecture by developing a new theory called inter-universal Teichmüller theory (IUTT).[12] However, the papers have not been accepted by the mathematical community as providing a proof of the conjecture,[13][14][15] with Peter Scholze and Jakob Stix concluding in March 2018 that the gap was "so severe that … small modifications will not rescue the proof strategy".[16][17][18]

See also

References

  1. ^ Goldfeld, Dorian (1996). "Beyond the last theorem". Math Horizons. 4 (September): 26–34. doi:10.1080/10724117.1996.11974985. JSTOR 25678079.
  2. ^ Bombieri, Enrico (1994). "Roth's theorem and the abc-conjecture". Preprint. ETH Zürich.
  3. ^ Elkies, N. D. (1991). "ABC implies Mordell". International Mathematics Research Notices. 1991 (7): 99–109. doi:10.1155/S1073792891000144.
  4. ^ Pomerance, Carl (2008). "Computational Number Theory". The Princeton Companion to Mathematics. Princeton University Press. pp. 361–362.
  5. ^ Dąbrowski, Andrzej (1996). "On the diophantine equation x! + A = y2". Nieuw Archief voor Wiskunde, IV. 14: 321–324. Zbl 0876.11015.
  6. ^ Fesenko, Ivan (2015), "Arithmetic deformation theory via arithmetic fundamental groups and nonarchimedean theta functions, notes on the work of Shinichi Mochizuki" (PDF), European Journal of Mathematics, 1 (3): 405–440, doi:10.1007/s40879-015-0066-0.
  7. ^ Oesterlé, Joseph (1988), "Nouvelles approches du "théorème" de Fermat", Astérisque, Séminaire Bourbaki exp 694 (161): 165–186, ISSN 0303-1179, MR 0992208
  8. ^ Waldschmidt, Michel (2015). "Lecture on the abc Conjecture and Some of Its Consequences" (PDF). Mathematics in the 21st Century. Springer Proceedings in Mathematics & Statistics. Vol. 98. pp. 211–230. doi:10.1007/978-3-0348-0859-0_13. ISBN 978-3-0348-0858-3.
  9. ^ Elkies, N. D. (1991). "ABC implies Mordell". International Mathematics Research Notices. 1991 (7): 99–109. doi:10.1155/S1073792891000144.
  10. ^ Pomerance, Carl (2008). "Computational Number Theory". The Princeton Companion to Mathematics. Princeton University Press. pp. 361–362.
  11. ^ Pasten, Hector (2017), "Definability of Frobenius orbits and a result on rational distance sets", Monatshefte für Mathematik, 182 (1): 99–126, doi:10.1007/s00605-016-0973-2, MR 3592123, S2CID 7805117
  12. ^ Ball, Peter (10 September 2012). "Proof claimed for deep connection between primes". Nature. doi:10.1038/nature.2012.11378. Retrieved 19 April 2020.
  13. ^ Revell, Timothy (September 7, 2017). "Baffling ABC maths proof now has impenetrable 300-page 'summary'". New Scientist.
  14. ^ Conrad, Brian (December 15, 2015). "Notes on the Oxford IUT workshop by Brian Conrad". Retrieved March 18, 2018.
  15. ^ Castelvecchi, Davide (8 October 2015). "The biggest mystery in mathematics: Shinichi Mochizuki and the impenetrable proof". Nature. 526 (7572): 178–181. Bibcode:2015Natur.526..178C. doi:10.1038/526178a. PMID 26450038.
  16. ^ Scholze, Peter; Stix, Jakob. "Why abc is still a conjecture" (PDF). Archived from the original on February 8, 2020. (updated version of their May report|)
  17. ^ Klarreich, Erica (September 20, 2018). "Titans of Mathematics Clash Over Epic Proof of ABC Conjecture". Quanta Magazine.
  18. ^ "March 2018 Discussions on IUTeich". Retrieved October 2, 2018. Web-page by Mochizuki describing discussions and linking consequent publications and supplementary material

Bibliography

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2016. Untuk kebijakan ekonomi berupa pengetatan perdagangan antarnegara, lihat Agresionisme (ekonomi). Agresionisme adalah teori filsafat yang menyatakan bahwa satu-satunya penyebab perang sesungguhnya adalah sifat agresif manusia.[1] Teori ini didomin...

 

 

Cawat olahraga Cawat olahraga adalah pakaian dalam untuk melindungi testis dan penis selama bersepeda, olahraga kontak atau aktivitas fisik lainnya. Cawat olahraga terdiri dari ikat pinggang (biasanya elastis) dengan kantong pendukung untuk alat kelamin dan dua tali elastis yang ditempelkan pada pangkal kantong dan di sisi kiri dan kanan ikat pinggang di pinggul. Kantung tersebut, dalam beberapa varietas, mungkin dilengkapi dengan saku untuk menahan pelindung perut (cangkir tahan benturan, ko...

 

 

This article may require cleanup to meet Wikipedia's quality standards. No cleanup reason has been specified. Please help improve this article if you can. (October 2011) (Learn how and when to remove this template message) 2006 single by BelanovaRosa PastelSingle by Belanovafrom the album Dulce Beat ReleasedApril 2, 2006 (Mexico, Argentina, Colombia)December 14, 2006 (U.S.)Recorded2005Genre Synthpop electro rock Length3:06LabelUniversal Music LatinoSongwriter(s)Denisse Guerrero Flores, Ricard...

Le Journal du dimanche Pays France Langue Français Périodicité Hebdomadaire Genre Généraliste Diffusion 135 939[1] ex. (2022) Date de fondation 1948 Ville d’édition Paris Propriétaire Vincent Bolloré via Lagardère Média News Directeur de la rédaction Geoffroy Lejeune ISSN 0242-3065 ISSN (version électronique) 1961-9456 Site web www.lejdd.fr modifier  Le Journal du dimanche, aussi appelé JDD[Note 1], est un titre de presse dominicale français fondé en 1948. Il s'agi...

 

 

Pemilihan umum Bupati Musi Rawas 2020201520249 Desember 2020[1]Kandidat Peta persebaran suara Lokasi Kabupaten Musi Rawas di Provinsi Sumatera Selatan Bupati Musi Rawas dan Wakil Bupati Musi Rawas petahanaHendra Gunawan dan Suwarti Partai Golongan Karya Bupati Musi Rawas dan Wakil Bupati Musi Rawas terpilih belum diketahui Pemilihan umum Kabupaten Musi Rawas 2020 (selanjutnya disebut Pilkada Musi Rawas 2020 atau Pilbup Musi Rawas 2020) adalah pemilihan umum lokal yang akan diselengga...

 

 

2018 single by Puerto Rican singer Pedro Capó This article is about the song by Pedro Capó. For the Daddy Yankee song, see Con Calma. CalmaSingle by Pedro Capófrom the album Munay ReleasedJuly 20, 2018 (2018-07-20)Recorded2018GenreLatin popLength3:00LabelSony LatinSongwriter(s) Pedro Capó George Noriega Gabriel Edgar Gonzalez Perez Producer(s) Rec808 George Noriega Pedro Capó singles chronology Las Luces (2018) Calma (2018) Te Olvidaré (2019) Music videoCalma on YouTube C...

ロバート・デ・ニーロRobert De Niro 2011年のデ・ニーロ生年月日 (1943-08-17) 1943年8月17日(80歳)出生地 アメリカ合衆国・ニューヨーク州ニューヨーク市身長 177 cm職業 俳優、映画監督、映画プロデューサージャンル 映画、テレビドラマ活動期間 1963年 -配偶者 ダイアン・アボット(1976年 - 1988年)グレイス・ハイタワー(1997年 - )主な作品 『ミーン・ストリート』(1973年)...

 

 

Cet article est une ébauche concernant l’astronomie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Télescope TransitPrésentationType RadiotélescopeObservatoire Observatoire Jodrell BankGéographieLocalisation Angleterre Royaume-Unimodifier - modifier le code - modifier Wikidata Le télescope Transit était un radiotélescope situé à l'observatoire Jodrell Bank, en Angleterre. Il a été construit ...

 

 

Species of plant Red bloodwood Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Myrtales Family: Myrtaceae Genus: Corymbia Species: C. gummifera Binomial name Corymbia gummifera(Gaertn.) K.D.Hill & L.A.S.Johnson[1] Synonyms[1] Synonyms Eucalyptus corymbosa Sm. Eucalyptus corymbosa Sm. var. corymbosa Eucalyptus corymbosus Cav. orth. var. Eucalyptus gummifera (Sol. ex Gaertn.) Hochr. Eucalyptus gummi...

Bagian dari seri tentang:Islamisme Dasar Islam Sejarah Budaya Ekonomi Politik Sekularisme Ideologi Islamisme Qutbisme Salafisme Islamisme Syiah Fundamentalisme Islam Konsep Kekhalifahan Demokrasi Islam Sosialisme Islam Negara Islam Monarki Islam Republik Islam Islamisasi (pengetahuan) Jihad Pan-Islamisme Pasca-Islamisme Syariah Syura Perbudakan Teori dua bangsa Umat Pengaruh Anti-imperialisme Anti-Zionisme Kebangkitan Islam Zaman Kejayaan Islam GerakanMazhab Ahl-i Hadith Deobandi Madkhal...

 

 

Tom Hardy al San Diego Comic-Con International 2018 Edward Thomas Hardy, detto Tom (Londra, 15 settembre 1977), è un attore, sceneggiatore e produttore cinematografico britannico. Ha debuttato nel film diretto da Ridley Scott Black Hawk Down - Black Hawk abbattuto (2001), ma riceve il riconoscimento internazionale nel 2010 quando appare in Inception diretto da Christopher Nolan. Tra i suoi ruoli più importanti ricordiamo il pretore remano Shinzon in Star Trek - La nemesi (2002), il feroce c...

 

 

Island to the north of Tasmania, Australia For other places with the same name, see Flinders Island (disambiguation). Flinders IslandThe Furneaux Group as viewed from space, April 1993Flinders Island, as shaded, located in the Bass StraitEtymologyMatthew FlindersGeographyLocationBass StraitCoordinates40°00′S 148°03′E / 40.000°S 148.050°E / -40.000; 148.050ArchipelagoFurneaux GroupArea1,367 km2 (528 sq mi)Area rank2nd in TasmaniaLength62 km (...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

 

Slovak far-right clerico-fascist political party of the 1930s SĽS redirects here. For other uses, see SLS. Not to be confused with Hlinka Guard. Hlinka's Slovak People's Party Hlinkova slovenská ľudová stranaAbbreviationHSĽS-SSNJ[1]FounderAndrej HlinkaFounded29 July 1913; 110 years ago (29 July 1913)BannedMay 1945; 79 years ago (May 1945)[2]Split fromSlovak National PartyNewspaperSlovák (1919–45)[3]Slovenská pravda (1936–45)Yo...

 

 

National Highway in India National Highway 320DMap of National Highway 320D in redRoute informationAuxiliary route of NH 20Length133.8 km (83.1 mi)Major junctionsEast endChakradharpurWest endRourkela LocationCountryIndiaStatesJharkhand, Odisha Highway system Roads in India Expressways National State Asian ← NH 20→ NH 143 National Highway 320D, commonly referred to as NH 320D is a national highway in India.[1][2] It is a secondary route of National ...

Neighborhood in Portland, Oregon, United StatesOld Town ChinatownNeighborhoodLocation in PortlandCoordinates: 45°31′31″N 122°40′21″W / 45.52528°N 122.67246°W / 45.52528; -122.67246PDF mapCountryUnited StatesStateOregonCityPortlandGovernment • AssociationOld Town Chinatown Neighborhood AssociationArea[1] • Total0.20 sq mi (0.53 km2)Population[2] • Total3,922 • Density19,000/sq...

 

 

Image of the Ohio River where many Indian tribes were located. George Washington met several times with Native American tribal leaders throughout his life as both a British and Colonial diplomat in the Ohio River Valley. Washington was first assigned as a British diplomat to the Iroquois Confederacy during the French and Indian War in 1753. In the inter-war period, Washington met with several Native Tribes in the Ohio River Valley in 1770. Both during and after the Revolution, Washington and ...

 

 

Fourth Division 1958-1959 Competizione Fourth Division Sport Calcio Edizione 1ª Organizzatore Football League Date dal 23 agosto 1958al 7 maggio 1959 Luogo  Inghilterra Galles Partecipanti 24 Formula girone all'italiana A/R Risultati Vincitore Port Vale(1º titolo) Altre promozioni Coventry CityShrewsbury TownYork City Statistiche Miglior marcatore Arthur Rowley (37) Incontri disputati 552 Gol segnati 1 794 (3,25 per incontro) Cronologia della competizione 1...

Pour les articles homonymes, voir L'Adoration des mages (homonymie). L'Adoration des magesL'Adoration des mages de Jan Cornelisz Vermeyen.Artiste Jan Cornelisz VermeyenDate 1555Type Huile sur panneau de boisTechnique PeintureDimensions (H × L) 102 × 80,2 cmMouvement ManiérismeNo d’inventaire P.46.1.270Localisation Musée des Beaux-Arts de Valenciennes, Valenciennes (France)Commentaire Monogramme et date : KAP 1555. Donné au musée en 1888modifier - mod...

 

 

Les grands ports regroupent le plus souvent de nombreuses installations spécialisées, les terminaux. Ici le minéralier Bao Guo (300 m de long pour 50 de large) en train d'être déchargé par les portiques d'un terminal du port de Rotterdam en 2009. La liste des plus grands ports fournit le classement annuel et l'évolution du trafic des principaux ports de commerce mondiaux. On peut mesurer ce trafic à partir de la masse de marchandises échangées, du nombre d'escales ou de la valeur de...