Synthesis of nanoparticles by fungi

Throughout human history, fungi have been utilized as a source of food and harnessed to ferment and preserve foods and beverages. In the 20th century, humans have learned to harness fungi to protect human health (antibiotics, anti-cholesterol statins, and immunosuppressive agents), while industry has utilized fungi for large scale production of enzymes, acids, and biosurfactants.[1] With the advent of modern nanotechnology in the 1980s, fungi have remained important by providing a greener alternative to chemically synthesized nanoparticle.[2]

Background

SEM image of fungal hyphae and fungal derived silver nanoparticles showing a large conglomeration made up of individual nanoparticles with fungal hyphae (dark areas) in background.

A nanoparticle is defined as having one dimension 100 nm or less in size. Environmentally toxic or biologically hazardous reducing agents are typically involved in the chemical synthesis of nanoparticles[2] so there has been a search for greener production alternatives.[3][4] Current research has shown that microorganisms, plant extracts, and fungi can produce nanoparticles through biological pathways.[2][3][5] The most common nanoparticles synthesized by fungi are silver and gold, however fungi have been utilized in the synthesis other types of nanoparticles including zinc oxide, platinum, magnetite, zirconia, silica, titanium, and cadmium sulfide and cadmium selenide quantum dots.

Silver nanoparticle production

Synthesis of silver nanoparticles has been investigated utilizing many ubiquitous fungal species including Trichoderma,[6][7] Fusarium,[8] Penicillium,[9] Rhizoctonia,[citation needed] Pleurotus and Aspergillus.[10] Extracellular synthesis has been demonstrated by Trichoderma virde, T. reesei, Fusarium oxysporm, F. semitectum, F. solani, Aspergillus niger, A. flavus,[11] A. fumigatus, A. clavatus, Pleurotus ostreatus, Cladosporium cladosporioides,[6] Penicillium brevicompactum, P. fellutanum, an endophytic Rhizoctonia sp., Epicoccum nigrum, Chrysosporium tropicum, and Phoma glomerata, while intracellular synthesis was shown to occur in a Verticillium [12] species, and in Neurospora crassa.

Gold nanoparticle production

Synthesis of gold nanoparticles has been investigated utilizing Fusarium,[13] Neurospora,[14] Verticillium, yeasts,[15][16] and Aspergillus. Extracellular gold nanoparticle synthesis was demonstrated by Fusarium oxysporum, Aspergillus niger, and cytosolic extracts from Candida albican. Intracellular gold nanoparticle synthesis has been demonstrated by a Verticillum species, V. luteoalbum,[17]

Miscellaneous nanoparticle production

In addition to gold and silver, Fusarium oxysporum has been used to synthesize zirconia, titanium, cadmium sulfide and cadmium selenide nanosize particles. Cadmium sulfide nanoparticles have also been synthesized by Trametes versicolor, Schizosaccharomyces pombe, and Candida glabrata.[18] The white-rot fungus Phanerochaete chrysosporium has also been demonstrated to be able to synthesize elemental selenium nanoparticles.[19]

Culture techniques and conditions

Culture techniques and media vary depending upon the requirements of the fungal isolate involved, however the general procedure consist of the following: fungal hyphae are typically placed in liquid growth media and placed in shake culture until the fungal culture has increased in biomass. The fungal hyphae are removed from the growth media, washed with distilled water to remove the growth media, placed in distilled water and incubated on shake culture for 24 to 48 hours. The fungal hyphae are separated from the supernatant, and an aliquot of the supernatant is added to 1.0 mM ion solution. The ion solution is then monitored for 2 to 3 days for the formation of nanoparticles. Another common culture technique is to add washed fungal hyphae directly into 1.0 mM ion solution instead of utilizing the fungal filtrate. Silver nitrate is the most widely used source of silver ions, but silver sulfate has also been utilized.[citation needed] Choloroauric acid is generally used as the source of gold ions at various concentrations (1.0 mM[13] and 250 mg to 500 mg[17] of Au per liter). Cadmium sulfide nanoparticle synthesis for F. oxysporum was conducted using a 1:1 ratio of Cd2+ and SO42− at a 1 mM concentration.[20] Gold nanoparticles can vary in shape and size depending on the pH of the ion solution.[17] Gericke and Pinches (2006) reported that for V. luteoalbum small (cc.10 nm) spherical gold nanoparticles are formed at pH 3, larger (spherical, triangular, hexagon and rods) gold nanoparticles are formed at pH 5, and at pH 7 to pH 9 the large nanoparticles tend to lack a defined shape. Temperature interactions for both silver and gold nanoparticles were similar; a lower temperature resulted in larger nanoparticles while higher temperatures produced smaller nanoparticles.[17]

Analytical techniques

Visual observations

For externally synthesized silver nanoparticles the silver ion solution generally becomes brownish in color,[7][8][9] but this browning reaction may be absent.[citation needed] For fungi that synthesize intracellular silver nanoparticles, the hyphae darken to a brownish color while the solution remains clear. In both cases the browning reaction is attributed to the surface plasmon resonance of the metallic nanoparticles.[6][21] For external gold nanoparticle production, the solution color can vary depending on the size of the gold nanoparticles; smaller particles appear pink while large particles appear purple. Intracellular gold nanoparticle synthesis typically turns the hyphae purple while the solution remains clear. Externally synthesized cadmium sulfide nanoparticles were reported to make the solution color appear bright yellow.[20]

Analytical tools

Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-ray (EDX), UV-vis spectroscopy, and X-ray diffraction are used to characterize different aspects of nanoparticles. Both SEM and TEM can be used to visualize the location, size, and morphology of the nanoparticles, while UV-vis spectroscopy can be used to confirm the metallic nature, size and aggregation level. Energy dispersive analysis of X-ray is used to determine elemental composition, and X-ray diffraction is used to determine chemical composition and crystallographic structure. UV-Vis absorption peaks for silver, gold, and cadmium sulfide nanoparticles can vary depending on particle size: 25-50 nm silver particles peak ca. 415 nm, gold nanoparticles 30-40 nm peak ca. 450 nm, while a cadmium sulfide absorption edge ca. 450 is indicative of quantum size particles.[20] Larger nanoparticle of each type will have UV-Vis absorption peaks or edges that shift to longer wavelengths while smaller nanoparticles will have UV-Vis absorption peaks or edges that shift to shorter wavelengths.

Formation mechanisms

Gold and silver

SEM image of fungal derived silver nanoparticles stabilized by a capping agent.

Nitrate reductase was suggested to initiate nanoparticle formation by many fungi including Penicillium species, while several enzymes, α-NADPH-dependent reductases, nitrate-dependent reductases and an extracellular shuttle quinone, were implicated in silver nanoparticle synthesis for Fusarium oxysporum. Jain et al. (2011) indicated that silver nanoparticle synthesis for A. flavus occurs initially by a "33kDa" protein followed by a protein (cystein and free amine groups) electrostatic attraction which stabilizes the nanoparticle by forming a capping agent.[11] Intracellular silver and gold nanoparticle synthesis is not fully understood but similar fungal cell wall surface electrostatic attraction, reduction, and accumulation has been proposed.[20] External gold nanoparticle synthesis by P. chrysosporium was attributed to laccase, while intracellular gold nanoparticle synthesis was attributed to ligninase.[20]

Cadmium sulfide

Cadmium sulfide nanoparticle synthesis by yeast involves sequestration of Cd2+ by glutathione-related peptides followed by reduction within the cell. Ahmad et al. (2002) reported that cadmium sulfide nanoparticle synthesis by Fusarium oxysporum was based on a sulfate reductase (enzyme) process.

References

  1. ^ Barredo JL, ed. (2005). "Microbial cells and enzymes". Microbial enzymes and biotransformations. Humana Press. pp. 1–10. ISBN 978-1-58829-253-7.
  2. ^ a b c Ghorbani, HR; Safekordi AA; Attar H; Rezayat Sorkhabadi SM (2011). "Biological and non-biological methods for silver nanoparticles synthesis". Chemical and Biochemical Engineering Quarterly. 25: 317–326.
  3. ^ a b Abou El-Nour, MM; Eftaiha A; Al-Warthan A; Ammar RAA (2010). "Synthesis and application of silver nanoparticles". Arabian Journal of Chemistry. 3 (3): 135–140. doi:10.1016/j.arabjc.2010.04.008.
  4. ^ Popescu, M; Velea A; Lőrinczi A (2010). "Biogenic production of nanoparticles". Digest J of Nanomaterials and Biostructures. 5: 1035–1040.
  5. ^ Sastry, M; Ahmad A; Khan MI; Kumar R (2003). "Biosynthesis of metal nanoparticles using fungi and actinomycete". Current Science. 85: 162–170.
  6. ^ a b c Vahabi, K; Mansoori GA; Karimi S (2011). "Biosynthesis of silver nanoparticles by fungus Trichoderma reesei: a route for large-scale production of AgNPs". Insciences Journal. 1: 65–79. doi:10.5640/insc.010165.
  7. ^ a b Basavaraja, S; Balaji SD; Lagashetty A; Rajasab AH; Venkataraman A (2008). "Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum". Materials Research Bulletin. 45 (5): 1164–1170. doi:10.1016/j.materresbull.2007.06.020.
  8. ^ a b Durán, N; Marcato PD; Alves OL; IH de Souza G; Esposito E (2005). "Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains". Journal of Nanobiotechnology. 3: 8. doi:10.1186/1477-3155-3-8. PMC 1180851. PMID 16014167.
  9. ^ a b Naveen, H; Kumar G; Karthik L; Roa B (2010). "Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp". Archives of Applied Science Research. 2: 161–167.
  10. ^ Bhainsa, KC; D’Sousa SF (2006). "Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatas". Colloids and Surfaces B: Biointerfaces. 47 (2): 160–164. doi:10.1016/j.colsurfb.2005.11.026. PMID 16420977.
  11. ^ a b Jain, N; Jain, N., Bhargava A, Majumdar S, Tarafdar J, Panwar J; Majumdar, Sonali; Tarafdar, J. C.; Panwar, Jitendra (2011). "Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective". Nanoscale. 3 (2): 635–641. Bibcode:2011Nanos...3..635J. doi:10.1039/c0nr00656d. PMID 21088776.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. ^ Mukherjee, P; Ahmad A, Mandal D, Senapati S, Sainkar S, Khan M, Parishcha R, Ajaykumar P, Alam M, Kumar R, Sastry M; Mandal, Deendayal; Senapati, Satyajyoti; Sainkar, Sudhakar R.; Khan, Mohammad I.; Parishcha, Renu; Ajaykumar, P. V.; Alam, Mansoor; Kumar, Rajiv; Sastry, Murali (2001). "Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix; a novel biological approach to nanoparticle synthesis". Nano Letters. 1 (10): 515–519. Bibcode:2001NanoL...1..515M. doi:10.1021/nl0155274.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ a b Mukherjee, P; Senapati S; Mandal D; Ahmad A; Khan M; Kumar R; Sastry M (2002). "Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum". ChemBioChem. 3 (5): 461–463. doi:10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X. PMID 12007181. S2CID 34520744.
  14. ^ Castro-Longoria, E; Vilchis-Nestor A,and Avales-Borja M; Avalos-Borja, M. (2011). "Biosynthesis of silver, gold, and bimetallic nanoparticles using the filamentous fungus Neurospora crassa". Colloids and Surfaces B: Biointerfaces. 83 (1): 42–48. doi:10.1016/j.colsurfb.2010.10.035. PMID 21087843.
  15. ^ Agnihotri, M; Joshi S; Kumar A; Zinjarde S; Kulkarni S (2009). "Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589". Materials Letters. 63 (15): 1231–1234. Bibcode:2009MatL...63.1231A. doi:10.1016/j.matlet.2009.02.042.
  16. ^ Chauhan, A; Zubair S; Tufail S; Sherwani A; Sajid M; Raman S; Azam A; Owais M (2011). "Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer". International Journal of Nanomedicine. 6: 2305–2319. doi:10.2147/ijn.s23195. PMC 3205127. PMID 22072868.
  17. ^ a b c d Gericke, M; Pinches A (2006). "Biological synthesis of metal nanoparticles". Hydrometallurgy. 83 (1–4): 132–140. Bibcode:2006HydMe..83..132G. doi:10.1016/j.hydromet.2006.03.019.
  18. ^ Li, X; Xu H; Chen Z; Chen G (2011). "Biosynthesis of nanoparticles by microorganisms and their applications". Journal of Nanomaterials. 2011: 1–16. doi:10.1155/2011/270974.
  19. ^ Espinosa-Ortiz, EJ; Gonzalez-Gil G; Saikaly PE; van Hullebusch ED; Lens PNL (2014). "Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium". Appl Microbiol Biotechnol. 99 (5): 2405–2418. doi:10.1007/s00253-014-6127-3. PMID 25341399. S2CID 253768254.
  20. ^ a b c d e Ahmad, A; Mukherjee P; Mandal D; Senapati S; Khan M; Kumar R; Sastry M (2002). "Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum". Journal of the American Chemical Society. 124 (41): 12108–12109. doi:10.1021/ja027296o. PMID 12371846.
  21. ^ Shankar, S; Ahmad A; Sastry M (2003). "Geranium leaf assisted biosynthesis of silver nanoparticles". Biotechnol. Prog. 19 (6): 1627–1631. doi:10.1021/bp034070w. PMID 14656132. S2CID 10120705.

Read other articles:

Untuk kegunaan lain, lihat Aura (disambiguasi). Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2012. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipert...

 

Untuk kegunaan lain, lihat Sriwijaya dan Sriwijaya (disambiguasi). Sriwijaya TVPT Sriwijaya Palembang TelevisiPalembang, Sumatera SelatanIndonesiaSaluranDigital: 35 UHF (sejak 1 Mei 2022)SloganMatahari Bumi SriwijayaPemrogramanAfiliasiIndonesia NetworkKepemilikanPemilikKelompok Media Bali PostStasiun seinduk Bali TV Aceh TV Bandung TV Jogja TV Semarang TV Sumut TV Surabaya TV RiwayatSiaran perdana15 Juni 2006Bekas tanda panggilSriwijaya (kerajaan) TelevisiBekas nomor kanal48 UHF (analog)Makna...

 

Gunung TaalBulkang TaalFoto udara Pulau Volcano di dalam Gunung Api Taal sebelum letusan 2020. Utara ada di sebelah kanan.Titik tertinggiKetinggian311 m (1.020 ft)[1]Koordinat14°0′36″N 120°59′51″E / 14.01000°N 120.99750°E / 14.01000; 120.99750Koordinat: 14°0′36″N 120°59′51″E / 14.01000°N 120.99750°E / 14.01000; 120.99750 GeografiGunung TaalLokasi di FilipinaTampilkan peta LuzonGunung TaalGunung Taa...

Bupati WonogiriLambang Kabupaten WonogiriPetahanaJoko Sutoposejak 26 Februari 2021KediamanKantor Bupati Wonogiri Jl. Kabupaten No. 4, Kabupaten Wonogiri, Jawa TengahMasa jabatan5 TahunDibentuk19 November 1917Pejabat pertamaK.R.M.T. Warso AdiningratSitus webwonogirikab.go.id Sejarah Bupati Wonogiri Setelah Raden Mas Said meninggal dunia, kekuasaan trah Mangkunegaran diteruskan oleh putra-putra beliau. Ada beberapa perkembangan penting mengenai situasi dan kondisi daerah kekuasaan, serta s...

 

Kereta api Andalan Celebes dan LontaraKereta api Andalan Celebes saat sedang menanti penumpang di Stasiun MarosInformasi umumJenis layananKereta api komuter perintisStatus Beroperasi (Andalan Celebes) Berhenti Sementara (Lontara) Mulai beroperasi29 Oktober 2022 (2022-10-29) (uji coba terbatas)Operator saat iniKonsorsium Kereta Api Sulawesi Selatan Kereta Api Indonesia Daerah Operasi 8 Surabaya Sulsel Citra Indonesia Lintas pelayananStasiun awalMandaiJumlah pemberhentianLihatlah di bawahS...

 

American baseball player (born 1948) Baseball player Gary NolanPitcherBorn: (1948-05-27) May 27, 1948 (age 75)Herlong, California, U.S.Batted: RightThrew: RightMLB debutApril 15, 1967, for the Cincinnati RedsLast MLB appearanceSeptember 18, 1977, for the California AngelsMLB statisticsWin–loss record110–70Earned run average3.08Strikeouts1,039 Teams Cincinnati Reds (1967–1973, 1975–1977) California Angels (1977) Career highlights and awards All-Star (...

NarutoMusim 3Berkas:3rdstagenaruto.jpgGambar sampul musim 3Negara asalJepangJumlah episode41RilisSaluran asliTV TokyoTanggal tayang15 September 2004 (2004-09-15) –29 Juni 2005 (2005-6-29)Kronologi Musim← SebelumnyaMusim 2 Selanjutnya →Musim 4 Daftar episode Naruto Musim ketiga serial anime Naruto, yang berjudul 3rd Stage di Jepang, disutradarai oleh Hayato Date dan diproduksi oleh Studio Pierrot dan TV Tokyo.[1] Berdasarkan pada manga Naruto karya Masash...

 

Ada usul agar artikel ini digabungkan dengan Nutrifood#Produk. (Diskusikan) Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: NutriSari – berita · surat kabar · buku · cendekiawan · JSTOR NutriSari merupakan salah satu merek minuman sari buah di Indones...

 

2017 single by ASAP Ferg Plain JaneSingle by ASAP Fergfrom the album Still Striving ReleasedJune 13, 2017Recorded2017GenreHip hopLength2:54LabelRCASongwriter(s)Darold Ferguson, Jr.Kirlan LabarriePaul BeauregardJordan HoustonProducer(s)Kirk KnightASAP Ferg singles chronology Look at Us Now (2017) Plain Jane (2017) Nasty (Who Dat) (2017) Music videoPlain Jane on YouTubeRemixCover art of the official remix featuring Nicki Minaj. Nicki Minaj singles chronology The Way Life Goes (Remix)(2017) ...

Turco-Afghan emperor of Khalji dynasty 1296–1316 Alauddin KhaljiSultanSikander-e-Sani (Alexander the Second)A 17th century portrait of Alauddin Khalji13th Sultan of DelhiReign19 July 1296–4 January 1316Coronation21 October 1296PredecessorJalaluddin Firuz KhaljiSuccessorShihabuddin OmarGovernor of AwadhTenurec. 1296–19 July 1296Governor of KaraTenurec. 1266–1316PredecessorMalik ChajjuSuccessorʿAlāʾ ul-MulkAmir-i-Tuzuk (equivalent to Master of ceremonies) Tenurec. 1290–1291BornAli ...

 

Communication campaign Be Brave Like UkraineProduced byBanda AgencyCountry UkraineWebsitehttps://brave.ua Be Brave Like Ukraine (Ukrainian: Будь сміливим, як Україна) or Bravery (Ukrainian: Сміливість) is a communication campaign created during the full-scale Russian invasion of Ukraine in 2022.[1] The campaign which is claimed to be part of Ukrainian propaganda[2][3] is designed to highlight the main feature of Ukrainians. It w...

 

Запрос «Пугачёва» перенаправляется сюда; см. также другие значения. Алла Пугачёва На фестивале «Славянский базар в Витебске», 2016 год Основная информация Полное имя Алла Борисовна Пугачёва Дата рождения 15 апреля 1949(1949-04-15) (75 лет) Место рождения Москва, СССР[1]...

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

Railway station in the East Riding of Yorkshire, England BridlingtonGeneral informationLocationBridlington, East Riding of YorkshireEnglandCoordinates54°05′02″N 0°11′55″W / 54.0840°N 0.1985°W / 54.0840; -0.1985Grid referenceTA178668Managed byNorthernPlatforms3 (numbered 4-6)Other informationStation codeBDTClassificationDfT category DHistoryOriginal companyYork and North Midland RailwayPre-groupingNorth Eastern RailwayPost-groupingLondon and North Eastern Ra...

 

River in Mozambique Buzi RiverBuzi River with floods after Cyclone Idai, March 2019Native namePortuguese: Rio BúziLocationCountryMozambiqueProvincesManica and SofalaPhysical characteristicsSource  • locationEastern Highlands MouthMozambique Channel • coordinates19°52′0″S 34°46′0″E / 19.86667°S 34.76667°E / -19.86667; 34.76667Length374 km (232 mi)Basin size28,490 km2 (11,000 sq mi)[1]...

Peta menunjukan aktivitas gempa bumi di sekitar palung Sunda sekitar waktu saat Gempa bumi samudera Hindia 2004. Palung Sunda adalah palung yang terletak di timur laut samudra Hindia dengan panjang 2.869 kilometer membentang dari Pulau Sumatera bagian utara hingga Kepulauan Lombok, Nusa Tenggara Barat dengan kedalaman maksimum 7.126 meter. Palung ini merupakan palung terdalam yang terletak di Samudera Hindia. Artikel bertopik geografi ini adalah sebuah rintisan. Anda dapat membantu Wikipedia ...

 

Mer Bleue redirects here. For the bay in the Caspian Sea, see Dead Kultuk. Mer Bleue BogIUCN category II (national park)[1]Pond with part of boardwalk in backgroundMer BleueLocationEastern Ontario, CanadaNearest cityOttawaCoordinates45°24′N 75°30′W / 45.400°N 75.500°W / 45.400; -75.500Area3,343 ha (12.91 sq mi)EstablishedRamsar 5 Oct. 1995Governing bodyNational Capital Commission Ramsar WetlandOfficial nameMer Bleue Conserv...

 

AlkhairaatالخيراتLogo Alkhairaat sesuai Sertifikat Hak Merek KemenkumhamTanggal pendirian11 Juni 1930; 94 tahun lalu (1930-06-11)PendiriSayyid Idrus bin Salim al-JufriDidirikan diPalu, IndonesiaTipeOrganisasi keagamaanTujuanPendidikan, dakwah, dan sosialKantor pusatJl. SIS Aljufri No. 44Koordinat0°53′55″S 119°51′33″E / 0.898503°S 119.859130°E / -0.898503; 119.859130Koordinat: 0°53′55″S 119°51′33″E / 0.898503°S 119.8591...

This article is about the 1980 Bulgarian film. For the 1953 West German film, see Lady's Choice (film). 1980 Bulgarian filmДами Канят(Ladies' Choice)the original cinema poster (left)[1] and the new DVD cover (right)Directed byIvan AndonovWritten byGeorgi MishevStarringStefan DanailovGeorgi RusevNikola TodevNevena KokanovaTsvetana ManevaMariana DimitrovaDoroteya TonchevaYordanka KuzmanovaNadya TodorovaMariya StatulovaMusic byGeorgi GenkovProductioncompaniesBulgarian Cinematogr...

 

This file is an archive - please do not add new discussion here - add it to my Talk page Archived to October 31 Stubstuff Eritrea people stubs Apparently, someone created Eritrean people stubs without any discussion that I can remember. However, they currently only have 25 and I doubt they will pass the threshold anytime soon. I don't really know the procedure for deleting/upmerging it, so I am passing the buck to you. Thanks.--Thomas.macmillan 13:18, 1 September 2006 (UTC)[reply] Tibet-geo-s...