Surface activated bonding (SAB) is a non-high-temperature wafer bonding technology with atomically clean and activated surfaces. Surface activation prior to bonding by using fast atom bombardment is typically employed to clean the surfaces. High-strength bonding of semiconductor, metal, and dielectric can be obtained even at room temperature.[1][2]
Overview
In the standard SAB method, wafer surfaces are activated by argon fast atom bombardment in ultra-high vacuum (UHV) of 10−4–10−7 Pa. The bombardment removes adsorbed contaminants and native oxides on the surfaces. The activated surfaces are atomically clean and reactive for formation of direct bonds between wafers when they are brought into contact even at room temperature.
Researches on SAB
The SAB method has been studied for bonding of various materials, as shown in Table I.
Table I. Studies of standard SAB for various materials
The standard SAB, however, failed to bond some materials such as SiO2 and polymer films. The modified SAB was developed to solve this problem, by using a sputtering deposited Si intermediate layer to improve the bond strength.
^ abJ. Liang, T. Miyazaki, M. Morimoto, S. Nishida, N. Watanabe, and N. Shigekawa, “Electrical Properties of p-Si/n-GaAs Heterojunctions by Using Surface-Activated Bonding,” Appl. Phys. Express, vol. 6, no. 2, p. 021801, Feb. 2013. Available doi:10.7567/APEX.6.021801
^ abcdH. Takagi, J. Utsumi, M. Takahashi, and R. Maeda, “Room-Temperature Bonding of Oxide Wafers by Ar-beam Surface Activation,” ECS Trans., vol. 16, no. 8, pp. 531–537, Oct. 2008. Available doi:10.1149/1.2982908
^ abMu, F.; Iguchi, K.; Nakazawa, H.; Takahashi, Y.; Fujino, M.; Suga, T. (30 June 2016). "Direct Wafer Bonding of SiC-SiC by SAB for Monolithic Integration of SiC MEMS and Electronics". ECS Journal of Solid State Science and Technology. 5 (9): P451–P456. doi:10.1149/2.0011609jss.
^ abShigetou, A.; Itoh, T.; Matsuo, M.; Hayasaka, N.; Okumura, K.; Suga, T. (2006-05-01). "Bumpless interconnect through ultrafine Cu electrodes by means of surface-activated bonding (SAB) method". IEEE Transactions on Advanced Packaging. 29 (2): 218–226. doi:10.1109/TADVP.2006.873138. ISSN1521-3323. S2CID27663896.
^R. Kondou and T. Suga, “Room temperature SiO2 wafer bonding by adhesion layer method,” presented at the Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st, 2011, pp. 2165–2170. Available doi:10.1109/ECTC.2011.5898819
^T. Matsumae, M. Fujino, and T. Suga, “Room-temperature bonding method for polymer substrate of flexible electronics by surface activation using nano-adhesion layers,” Japanese Journal of Applied Physics, vol. 54, no. 10, p. 101602, Oct. 2015. Available doi:10.7567/JJAP.54.101602
^ abMatsumae, Takashi; Nakano, Masashi; Matsumoto, Yoshiie; Suga, Tadatomo (2013-03-15). "Room Temperature Bonding of Polymer to Glass Wafers Using Surface Activated Bonding (SAB) Method". ECS Transactions. 50 (7): 297–302. Bibcode:2013ECSTr..50g.297M. doi:10.1149/05007.0297ecst. ISSN1938-6737.
^ abTakeuchi, K.; Fujino, M.; Suga, T.; Koizumi, M.; Someya, T. (2015-05-01). "Room temperature direct bonding and debonding of polymer film on glass wafer for fabrication of flexible electronic devices". 2015 IEEE 65th Electronic Components and Technology Conference (ECTC). pp. 700–704. doi:10.1109/ECTC.2015.7159668. ISBN978-1-4799-8609-5. S2CID11395361.
^ abMu, Fengwen; Iguchi, Kenichi; Nakazawa, Haruo; Takahashi, Yoshikazu; Fujino, Masahisa; Suga, Tadatomo (2016-04-01). "Room-temperature wafer bonding of SiC–Si by modified surface activated bonding with sputtered Si nanolayer". Japanese Journal of Applied Physics. 55 (4S): 04EC09. Bibcode:2016JaJAP..55dEC09M. doi:10.7567/jjap.55.04ec09. S2CID124719605.
^K. Tsuchiyama, K. Yamane, H. Sekiguchi, H. Okada, and A. Wakahara, “Fabrication of Si/SiO2/GaN structure by surface-activated bonding for monolithic integration of optoelectronic devices,” Japanese Journal of Applied Physics, vol. 55, no. 5S, p. 05FL01, May 2016. Available doi:10.7567/JJAP.55.05FL01
^ abHe, Ran; Fujino, Masahisa; Yamauchi, Akira; Suga, Tadatomo (2016-04-01). "Combined surface-activated bonding technique for low-temperature hydrophilic direct wafer bonding". Japanese Journal of Applied Physics. 55 (4S): 04EC02. Bibcode:2016JaJAP..55dEC02H. doi:10.7567/jjap.55.04ec02. S2CID123656692.
^ abHe, Ran; Fujino, Masahisa; Yamauchi, Akira; Wang, Yinghui; Suga, Tadatomo (2016-01-01). "Combined Surface Activated Bonding Technique for Low-Temperature Cu/Dielectric Hybrid Bonding". ECS Journal of Solid State Science and Technology. 5 (7): P419–P424. doi:10.1149/2.0201607jss. ISSN2162-8769. S2CID101149612.