Support polygon

For a rigid object in contact with a fixed environment and acted upon by gravity in the vertical direction, its support polygon is a horizontal region over which the center of mass must lie to achieve static stability.[1] For example, for an object resting on a horizontal surface (e.g. a table), the support polygon is the convex hull of its "footprint" on the table.

The support polygon succinctly represents the conditions necessary for an object to be at equilibrium under gravity. That is, if the object's center of mass lies over the support polygon, then there exist a set of forces over the region of contact that exactly counteracts the forces of gravity. Note that this is a necessary condition for stability, but not a sufficient one.

Derivation[2]

Let the object be in contact at a finite number of points . At each point , let be the set of forces that can be applied on the object at that point. Here, is known as the friction cone, and for the Coulomb model of friction, is actually a cone with apex at the origin, extending to infinity in the normal direction of the contact.

Let be the (unspecified) forces at the contact points. To balance the object in static equilibrium, the following Newton-Euler equations must be met on :

  • for all

where is the force of gravity on the object, and is its center of mass. The first two equations are the Newton-Euler equations, and the third requires all forces to be valid. If there is no set of forces that meet all these conditions, the object will not be in equilibrium.

The second equation has no dependence on the vertical component of the center of mass, and thus if a solution exists for one , the same solution works for all . Therefore, the set of all that have solutions to the above conditions is a set that extends infinitely in the up and down directions. The support polygon is simply the projection of this set on the horizontal plane.

These results can easily be extended to different friction models and an infinite number of contact points (i.e. a region of contact).

Properties

Even though the word "polygon" is used to describe this region, in general it can be any convex shape with curved edges. The support polygon is invariant under translations and rotations about the gravity vector (that is, if the contact points and friction cones were translated and rotated about the gravity vector, the support polygon is simply translated and rotated).

If the friction cones are convex cones (as they typically are), the support polygon is always a convex region. It is also invariant to the mass of the object (provided it is nonzero).

If all contacts lie on a (not necessarily horizontal) plane, and the friction cones at all contacts contain the negative gravity vector , then the support polygon is the convex hull of the contact points projected onto the horizontal plane.

References

  1. ^ McGhee, R. B.; Frank, A. A. (1968-08-01). "On the stability properties of quadruped creeping gaits". Mathematical Biosciences. 3: 331–351. doi:10.1016/0025-5564(68)90090-4. ISSN 0025-5564.
  2. ^ Bretl, T.; Lall, S. (August 2008). "Testing Static Equilibrium for Legged Robots". IEEE Transactions on Robotics. 24 (4): 794–807. doi:10.1109/TRO.2008.2001360. ISSN 1552-3098. S2CID 15864841.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. CkayInformasi latar belakangNama lahirChukwuka EkweaniLahirKaduna, NigeriaGenreAfrobeatsR&BpopPekerjaanPenyanyipenulis laguproduserInstrumenVokalpianodrumGitarTahun aktif2016–sekarangLabelChocolate cityArtis terkaitM.I, Davido, Amaarae, KiDi, Ayr...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) بطولة إفريقيا لألعاب القوى 2010 ملعب نيايو الوطني ، كينيا  الرياضيون المشاركون 588   الموقع الرسمي ا�...

 

ساتيندرا ناث بوز (بالبنغالية: সত্যেন্দ্রনাথ)‏    معلومات شخصية الميلاد 1 يناير 1894 [1][2][3][4][5]  كلكتا[6]  الوفاة 4 فبراير 1974 (80 سنة) [1][2][3][4][5]  كلكتا  الإقامة الهند  مواطنة الراج البريطاني (–14 أغسطس 1947) اتحاد ا...

President of Ghana Kwame Nkrumah with President of Yugoslavia Josip Broz Tito arriving at the 1st Summit of the Non-Aligned Movement in 1961 in Belgrade (Terazije with Palace Albanija in the background) Ghana has been a member state of the Non-Aligned Movement since the time of the 1st Summit of the Non-Aligned Movement in 1961 in Belgrade. As the first decolonized country in Sub-Saharan Africa, Ghana actively participated in earliest efforts to initiate Pan-African and Non-Aligned cooperatio...

 

RawamangunKelurahanNegara IndonesiaProvinsiDaerah Khusus Ibukota JakartaKota AdministrasiJakarta TimurKecamatanPulo GadungKodepos13220Kode Kemendagri31.75.02.1005 Kode BPS3172090005 Luas2,60 km2 Rawamangun adalah sebuah kelurahan yang terletak di wilayah Kecamatan Pulogadung, Kota Administrasi Jakarta Timur, Provinsi DKI Jakarta. Kelurahan ini memiliki kode pos 13220. Luas wilayah pada kelurahan ini sebesar 2,60 Km persegi. Kelurahan ini juga dilintasi oleh Kali Sunter yang berhulu di da...

 

Breadth of ideas which can be represented in a formal language In computer science, the expressive power (also called expressiveness or expressivity) of a language is the breadth of ideas that can be represented and communicated in that language. The more expressive a language is, the greater the variety and quantity of ideas it can be used to represent. For example, the Web Ontology Language expression language profile (OWL2 EL) lacks ideas (such as negation) that can be expressed in OWL2 RL...

此條目可参照英語維基百科相應條目来扩充。 (2021年10月13日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 国际调查记者同盟International Consortium of Investigative Journalists成立時間1997年總部华盛顿哥伦比亚特区 地址�...

 

Beauty pageant Miss Grand Nicaragua 2023Glennys Medina, the winner of the contestDateMay 24, 2023PresentersEpifanía SolísMaycrin JáenzVenueHoliday Inn Managua - Convention Center, ManaguaBroadcasterYouTube, Facebook LiveEntrants12Placements6DebutsCarazoChinandegaChontalesMadrizMasayaRivasWithdrawalsBoacoNorth Caribbean CoastRío San JuanWinnerGlennys Medina(Rivas)← 2021 Miss Grand Nicaragua 2023 was the second edition of the Miss Grand Nicaragua beauty pageant, held at Holiday ...

 

Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Мат...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目的引用需要清理,使其符合格式。参考文献应符合正确的引用、脚注及外部链接格式。 此條目可参照英語維基百科相應條目来扩充,此條目在對應語言版為高品質條目。 (2023年8月17日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低�...

 

Chronologies Données clés 1126 1127 1128  1129  1130 1131 1132Décennies :1090 1100 1110  1120  1130 1140 1150Siècles :Xe XIe  XIIe  XIIIe XIVeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Religion (,) et * Croisades   Science () et Santé et médecine   Terrorisme Calendriers Romain Chinois Grégorien Julien Hébraïque Hindou Hégirien Persan Républicain modifier Années de la santé et de la médecine ...

 

هايك مؤسس الأمة الأرمنيَّة الأسطوري. القومية الأرمنية (بالأرمنيّة: Հայկական ազգայնականություն) تعود جذورها في الفترة الحديثة له جذوره إلى الرومانسي القومي ميكاييل شامشميان (1738-1823) والذي دعا عمومًا إلى خلق كيان حر ومستقل يسمى بأرمينيا المتحدة باعتبارها حل للقضية الأرمنية....

1952 studio album by Charlie Parker and Dizzy GillespieBird and DizStudio album by Charlie Parker and Dizzy GillespieReleasedJuly/August 1952[1]RecordedFebruary–May 5, 1949; and June 6, 1950; in New York CityGenreBebopLength24:58LabelClef/VerveProducerNorman GranzCharlie Parker and Dizzy Gillespie chronology Diz 'N' Bird In Concert(1947) Bird and Diz(1952) Jazz at Massey Hall(1953) Charlie Parker chronology Bird and Diz(1952) South of the Border(1952) Alternate cover1986 Ver...

 

Hindu spiritual school This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Alwaye Advaita Ashram – news · newspapers · books · scholar · JSTOR (June 2021) (Learn how and when to remove this message) Advaita Ashram - the ashrams in Aluva, founded in 1913 Sree Narayana Guru . Here he also established a Sanskrit school to restore th...

 

Speaker of the UK House of Commons from 2009 to 2019 The Right HonourableJohn BercowBercow in 2018Speaker of the House of Commonsof the United KingdomIn office22 June 2009 – 4 November 2019MonarchElizabeth IIPrime MinisterGordon BrownDavid CameronTheresa MayBoris JohnsonPreceded byMichael MartinSucceeded byLindsay HoyleShadow Secretary of State for International DevelopmentIn office10 November 2003 – 8 September 2004LeaderMichael HowardPreceded byCaroline SpelmanSucceede...

Untuk kegunaan lain, lihat Miracle in Cell No. 7. Miracle in Cell No. 7SutradaraMehmet Ada ÖztekinProduserSinan TuranSaner AyarSkenarioÖzge EfendioğluKubilay TatBerdasarkanMiracle in Cell No. 7 (2013)oleh Lee Hwan-kyungPemeranAras Bulut İynemli Nisa AksongurDeniz Baysalİlker AksumPenata musikHasan ÖzsütIşıl ÖzsütPerusahaanproduksiMotion Content GroupLanistar MedyaDistributorCJ Entertainment TurkeyTanggal rilis 11 Oktober 2019 (2019-10-11) Durasi132 menitNegaraTurkiBahasa...

 

British crime couple For the British historian, see Edith Thompson (historian). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Edith Thompson and Frederick Bywaters – news · newspapers · books · scholar · JSTOR (December 2016) (Learn how and when to remove this message) Edith Jessie ThompsonBornEdith Jessie...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: フォード・C100 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2012年9月) フォード・C100 カテゴリー 二座席レーシン�...

Matthijs Maris, Wash Day Matthijs Maris, The Bride, or Novice taking the Veil, 1887 Matthijs Maris, The Goatherd Matthias Maris (17 Agustus 1839 – 22 Agustus 1917) adalah seorang pelukis, etsa, dan litografer Belanda. Ia juga dikenal sebagai Matthijs Maris atau Thijs. Dia awalnya berasal dari Sekolah Den Haag, seperti dua saudara laki-lakinya, Jacob dan Willem, tetapi karya-karyanya kemudian semakin menyimpang dari sekolah itu menjadi gaya yang unik dipengaruhi oleh Pra-Rapha...

 

Medical condition Medical conditionChylomicron retention diseaseOther namesAnderson's DiseaseSpecialtyEndocrinology Chylomicron retention disease is a disorder of fat absorption.[1] It is associated with SAR1B.[2] Mutations in SAR1B prevent the release of chylomicrons in the circulation which leads to nutritional and developmental problems.[3] It is a rare autosomal recessive disorder with around 40 cases reported worldwide. Since the disease allele is recessive, paren...