Subsumption lattice

Pic. 1: Non-modular sublattice N5 in subsumption lattice

A subsumption lattice is a mathematical structure used in the theoretical background of automated theorem proving and other symbolic computation applications.

Definition

A term t1 is said to subsume a term t2 if a substitution σ exists such that σ applied to t1 yields t2. In this case, t1 is also called more general than t2, and t2 is called more specific than t1, or an instance of t1.

The set of all (first-order) terms over a given signature can be made a lattice over the partial ordering relation "... is more specific than ..." as follows:

  • consider two terms equal if they differ only in their variable naming,[1]
  • add an artificial minimal element Ω (the overspecified term), which is considered to be more specific than any other term.

This lattice is called the subsumption lattice. Two terms are said to be unifiable if their meet differs from Ω.

Properties

Pic. 2: Part of the subsumption lattice showing that the terms f(a,x), f(x,x), and f(x,c) are pairwise unifiable, but not simultaneously. (f omitted for brevity.)

The join and the meet operation in this lattice are called anti-unification and unification, respectively. A variable x and the artificial element Ω are the top and the bottom element of the lattice, respectively. Each ground term, i.e. each term without variables, is an atom of the lattice. The lattice has infinite descending chains, e.g. x, g(x), g(g(x)), g(g(g(x))), ..., but no infinite ascending ones.

If f is a binary function symbol, g is a unary function symbol, and x and y denote variables, then the terms f(x,y), f(g(x),y), f(g(x),g(y)), f(x,x), and f(g(x),g(x)) form the minimal non-modular lattice N5 (see Pic. 1); its appearance prevents the subsumption lattice from being modular and hence also from being distributive.

The set of terms unifiable with a given term need not be closed with respect to meet; Pic. 2 shows a counter-example.

Denoting by Gnd(t) the set of all ground instances of a term t, the following properties hold:[2]

  • t equals the join of all members of Gnd(t), modulo renaming,
  • t1 is an instance of t2 if and only if Gnd(t1) ⊆ Gnd(t2),
  • terms with the same set of ground instances are equal modulo renaming,
  • if t is the meet of t1 and t2, then Gnd(t) = Gnd(t1) ∩ Gnd(t2),
  • if t is the join of t1 and t2, then Gnd(t) ⊇ Gnd(t1) ∪ Gnd(t2).

'Sublattice' of linear terms

Pic. 5: Distributive sublattice of linear terms
Pic. 4: M3 built from linear terms
Pic. 3: N5 built from linear terms

The set of linear terms, that is of terms without multiple occurrences of a variable, is a sub-poset of the subsumption lattice, and is itself a lattice. This lattice, too, includes N5 and the minimal non-distributive lattice M3 as sublattices (see Pic. 3 and Pic. 4) and is hence not modular, let alone distributive.

The meet operation yields always the same result in the lattice of all terms as in the lattice of linear terms. The join operation in the all terms lattice yields always an instance of the join in the linear terms lattice; for example, the (ground) terms f(a,a) and f(b,b) have the join f(x,x) and f(x,y) in the all terms lattice and in the linear terms lattice, respectively. As the join operations do not in general agree, the linear terms lattice is not properly speaking a sublattice of the all terms lattice.

Join and meet of two proper[3] linear terms, i.e. their anti-unification and unification, corresponds to intersection and union of their path sets, respectively. Therefore, every sublattice of the lattice of linear terms that does not contain Ω is isomorphic to a set lattice, and hence distributive (see Pic. 5).

Origin

Apparently, the subsumption lattice was first investigated by Gordon D. Plotkin, in 1970.[4]

References

  1. ^ formally: factorize the set of all terms by the equivalence relation "... is a renaming of ..."; for example, the term f(x,y) is a renaming of f(y,x), but not of f(x,x)
  2. ^ Reynolds, John C. (1970). Meltzer, B.; Michie, D. (eds.). "Transformational Systems and the Algebraic Structure of Atomic Formulas" (PDF). Machine Intelligence. 5. Edinburgh University Press: 135–151.
  3. ^ i.e. different from Ω
  4. ^ Plotkin, Gordon D. (Jun 1970). Lattice Theoretic Properties of Subsumption. Edinburgh: Univ., Dept. of Machine Intell. and Perception.

Read other articles:

العلاقات الرواندية الماليزية رواندا ماليزيا   رواندا   ماليزيا تعديل مصدري - تعديل   العلاقات الرواندية الماليزية هي العلاقات الثنائية التي تجمع بين رواندا وماليزيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا...

 

العلاقات الجزائرية السنغافورية الجزائر سنغافورة   الجزائر   سنغافورة تعديل مصدري - تعديل   العلاقات الجزائرية السنغافورية هي العلاقات الثنائية التي تجمع بين الجزائر وسنغافورة.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتي�...

 

Vincenzo Traspedini Traspedini al Foggia & Incedit nel 1966 Nazionalità  Italia Altezza 186 cm Peso 77 kg Calcio Ruolo Attaccante Termine carriera 1973 Carriera Giovanili 1950-1955 Pergolettese Squadre di club1 1955-1957 Pergolettese30 (17)1957-1960 Fanfulla31 (11)1960-1961 Torino8 (2)1961-1963 Monza63 (27)1963-1965 Varese70 (21)1965-1966 Juventus23 (3)1966-1968 Foggia & Incedit62 (25)1968-1969 Verona34 (9)1969-1970 Atalanta14 (...

Form of matter Chemical redirects here. For other uses, see Chemical (disambiguation). Steam and liquid water are two different forms of the same pure chemical substance, water. A chemical substance is a unique form of matter with constant chemical composition and characteristic properties.[1][2] Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combined without reacting, they may form a chemical mixture....

 

Messier 68M68 dari Hubble Space Telescope; 3.32′ view Kredit: NASA/STScI/WikiSkyData pengamatan (J2000 epos)KelasX[1]Rasi bintangHydraAsensio rekta 12j 39m 27.98d[2]Deklinasi –26° 44′ 38.6″[2]Jarak336 kly (103 kpc)[3]Magnitudo tampak (V)+9.67[4]Dimensi tampak (V)11′.0Karakteristik fisikMassa2,23×105[3] M☉Radius53 tc[5]MetalisitasTemplat:Fe/H dexPerkiraan umur11.2 G...

 

Questa voce sull'argomento cestisti spagnoli è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Daniel Pérez Nazionalità  Spagna Altezza 188 cm Peso 85 kg Pallacanestro Ruolo Playmaker Squadra  Manresa Carriera Giovanili 2003-2008 Barcellona Squadre di club 2008-2011 Barcellona0 (0)2008-2010→  Cornellà60 (376)2010-2011→  Lleida34 (211)2011-2012 Minorca34 (301)2012...

2001 film by Arpád Sopsits AbandonedTorzókDirected byÁrpád SopsitsWritten byÁrpád SopsitsProduced byFerenc KardosLászló KántorStarringTamás MészárosSzabolcs CsizmadiaAttila ZsilákPéter MüllerCinematographyPéter SzatmáriEdited byBéla BarsiMusic byTamás GörgényiPeter PejtsikRelease date 1 February 2001 (2001-02-01) (Hungarian Film Week) Running time100 minutesCountryHungaryLanguageHungarian Abandoned (Hungarian: Torzók) is a 2001 Hungarian film written a...

 

Railway station in Jiangmen, Guangdong Jiangmen江门Station buildingGeneral informationLocationXinhui District, Jiangmen, GuangdongChinaLine(s)Guangzhou–Zhuhai railway (freight only)Guangzhou–Zhuhai intercity railwayShenzhen–Zhanjiang high-speed railwayZhuhai-Zhaoqing High-Speed RailwayOther informationStation codeTMIS code: 23498Telegraph code: JOQPinyin code: JMEHistoryOpened29 December 2012 (freight)15 November 2020 (passenger)Services Preceding station China Railway High-speed Foll...

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

Hiking trail in Wales Pembrokeshire Coast PathView from the Pembrokeshire Coast Path on Marloes peninsulaLength186 mi (299 km)LocationWalesDesignationUK National TrailTrailheadsPoppit Sands, near St. Dogmaels, Ceredigion52°05′21″N 4°40′56″W / 52.0891°N 4.6822°W / 52.0891; -4.6822 (Pembrokeshire Coast Path (St. Dogmaels trailhead))Amroth, Pembrokeshire51°44′02″N 4°38′52″W / 51.7340°N 4.6477°W / 51.7340; -...

 

La Regata 5 Océanos, ó VELUX 5 Océanos (por el patrocinio de la empresa VELUX), es una regata de vela alrededor del mundo por etapas para navegantes solitarios que se celebra desde 1982, cuando se disputó la primera edición bajo el nombre de BOC Challenge (por el patrocinio de la empresa BOC). En 1998 pasó a denominarse Around Alone y desde 2006 tiene su nombre actual. Se celebra cada cuatro años. Historia Esta competición nació inspirada en la regata Sunday Times Golden Globe Race ...

 

Diagram tentang efek jangka panjang dari Covid-19 Bagian dari seri artikel mengenaiPandemi Covid-19Permodelan atomik akurat yang menggambarkan struktur luar virus SARS-CoV-2. Tiap bola yang tergambarkan di sini adalah sebuah atom. SARS-CoV-2 (virus) Covid-19 (penyakit) Kronologi2019 2020 Januari Februari Maret April Mei Juni Juli Agustus September Oktober November Desember 2021 Januari Februari Maret April Mei Juni Juli Agustus September Lokasi Menurut benua Afrika Antarktika Asia Eropa Ameri...

Nairobi Half LifePoster filmSutradaraDavid Tosh GitongaProduserSarika Hemi LakhaniTom TykwerGinger WilsonDitulis olehBilly KahoraPotash Charles MatathiaSamuel MuneneSerah MwihakiPemeranJoseph WairimuPenata musikXaver von TreyerSinematograferChristian AlmesbergerPenyuntingMkaiwawi MwakabaTanggal rilis 19 Juli 2012 (2012-07-19) (Festival Film Durban) [1]Durasi96 menitNegaraKenyaBahasaSwahili InggrisSheng Nairobi Half Life adalah sebuah film drama Kenya 2012 yang disutrada...

 

Serangan Seratus ResimenBagian dari Perang Tiongkok-Jepang KeduaTentara Komunis Tiongkok yang menang memegang bendera Republik TiongkokTanggal20 Agustus–5 Desember 1940LokasiTiongkok Utara37°27′00″N 116°18′00″E / 37.4500°N 116.3000°E / 37.4500; 116.3000Koordinat: 37°27′00″N 116°18′00″E / 37.4500°N 116.3000°E / 37.4500; 116.3000Hasil Kemenangan TiongkokPihak terlibat  Republik Tiongkok ☆ Partai Komunis Tiongkok Ke...

 

Covington, VirginiaKotaJalan utama di Covington, Virginia LambangLocation of Covington, VirginiaNegara Amerika SerikatNegara bagianlbs Persemakmuran VirginiaRichmond (ibu kota)Topik Climate Colleges and universities Colony Congressional Districts Delegations Demographics Economy Geography Government Governors History Historic Landmarks Homes Music People Police Politics Rights Rivers School divisions Scouting Slogan Sports teams State Fair State parks Symbols Transportation Tribes V...

西瓜拉尼Guarani d'Oeste市镇西瓜拉尼在巴西的位置坐标:20°04′29″S 50°20′22″W / 20.074722222222°S 50.339444444444°W / -20.074722222222; -50.339444444444国家巴西州圣保罗州面积 • 总计84.534 平方公里(32.639 平方英里)海拔499 公尺(1,637 英尺)人口(2006) • 總計2,132人 • 密度25.2人/平方公里(65.3人/平方英里) 西瓜拉尼(葡萄牙语�...

 

This article is written like a manual or guide. Please help rewrite this article and remove advice or instruction. (June 2023) Moncagua, San Miguel. El Salvador is a popular destination for surf tourism due to the large waves present in the Pacific Ocean. Alegría Lake The Emerald of America. Lake Coatepeque in the west of the country The San Miguel (volcano) during the eruption of December 29, 2013. Tourism accounts for a large part of El Salvador's economy. El Salvador has many natural att...

 

The following highways are numbered 710: Costa Rica National Route 710 United States I-710 I-710 (former proposal) SR 710 MD 710 PR-710 FM 710 Preceded by709 Lists of highways710 Succeeded by711 vteList of highways numbered ...0–9 0 1 1A 1B 1D 1X 2 2A 2N 3 3A 3B 3C 3E 3G 4 4A 5 5A 5B 6 6A 6N 7 7A 7B 7C 8 9 9A 9B 9E 9W 10–16 10 10A 10N 11 11A 11B 11C 12 12A 12B 12C 12D 12E 12F 13 13A 14 14A 15 15A 16 16A 17–22 17 17A 17B 17C 17E 17F 17J 18 18A 18B 18C 18D 18E 18F 19 ...

Sarroca de Bellera municipio de CataluñaBanderaEscudo Vista general de la localidad de Sarroca de Bellera Sarroca de BelleraUbicación de Sarroca de Bellera en España Sarroca de BelleraUbicación de Sarroca de Bellera en la provincia de Lérida País  España• Com. autónoma  Cataluña• Provincia Lérida• Comarca Pallars Jussá• Partido judicial Tremp[1]​Ubicación 42°21′34″N 0°52′52″E / 42.35947...

 

Non-profit organization American Sociological AssociationFormationJanuary 1, 1905; 119 years ago (1905-01-01)Headquarters1717 K Street NW, Suite 900, Washington, D.C., U.S.Membership (2023) 9,893[1]2023 PresidentJoya MisraPublicationFootnotesWebsitewww.asanet.org The American Sociological Association (ASA) is a non-profit organization dedicated to advancing the discipline and profession of sociology. Founded in December 1905 as the American Sociological Society at Jo...