In graph theory, the strong product is a way of combining two graphs to make a larger graph. Two vertices are adjacent in the strong product when they come from pairs of vertices in the factor graphs that are either adjacent or identical. The strong product is one of several different graph product operations that have been studied in graph theory. The strong product of any two graphs can be constructed as the union of two other products of the same two graphs, the Cartesian product of graphs and the tensor product of graphs.
An example of a strong product is the king's graph, the graph of moves of a chess king on a chessboard, which can be constructed as a strong product of path graphs. Decompositions of planar graphs and related graph classes into strong products have been used as a central tool to prove many other results about these graphs.
Care should be exercised when encountering the term strong product in the literature, since it has also been used to denote the tensor product of graphs.[1]
Definition and example
The strong productG ⊠ H of graphsG and H is a graph such that[2]
the vertex set of G ⊠ H is the Cartesian product V(G) × V(H); and
distinct vertices (u,u' ) and (v,v' ) are adjacent in G ⊠ Hif and only if:
For example, the king's graph, a graph whose vertices are squares of a chessboard and whose edges represent possible moves of a chess king, is a strong product of two path graphs. Its horizontal edges come from the Cartesian product, and its diagonal edges come from the tensor product of the same two paths. Together, these two kinds of edges make up the entire strong product.[3]
The clique number of the strong product of any two graphs equals the product of the clique numbers of the two graphs.[17] If two graphs both have bounded twin-width, and in addition one of them has bounded degree, then their strong product also has bounded twin-width.[18]
A leaf power is a graph formed from the leaves of a tree by making two leaves adjacent when their distance in the tree is below some threshold . If is a -leaf power of a tree , then can be found as a subgraph of a strong product of with a -vertex cycle. This embedding has been used in recognition algorithms for leaf powers.[19]
The strong product of a 7-vertex cycle graph and a 4-vertex complete graph, , has been suggested as a possibility for a 10-chromatic biplanar graph that would improve the known bounds on the Earth–Moon problem; another suggested example is the graph obtained by removing any vertex from . In both cases, the number of vertices in these graphs is more than 9 times the size of their largest independent set, implying that their chromatic number is at least 10. However, it is not known whether these graphs are biplanar.[20]
^Imrich, Wilfried; Klavžar, Sandi; Rall, Douglas F. (2008), Graphs and their Cartesian Product, A. K. Peters, ISBN978-1-56881-429-2.
^Berend, Daniel; Korach, Ephraim; Zucker, Shira (2005), "Two-anticoloring of planar and related graphs"(PDF), 2005 International Conference on Analysis of Algorithms, Discrete Mathematics & Theoretical Computer Science Proceedings, Nancy: Association for Discrete Mathematics & Theoretical Computer Science, pp. 335–341, MR2193130.
^Gawrychowski, Pawel; Janczewski, Wojciech (2022), "Simpler adjacency labeling for planar graphs with B-trees", in Bringmann, Karl; Chan, Timothy (eds.), 5th Symposium on Simplicity in Algorithms, SOSA@SODA 2022, Virtual Conference, January 10-11, 2022, Society for Industrial and Applied Mathematics, pp. 24–36, doi:10.1137/1.9781611977066.3, S2CID245738461
^Esperet, Louis; Joret, Gwenaël; Morin, Pat (2020), Sparse universal graphs for planarity, arXiv:2010.05779