Strong law of small numbers

In mathematics, the "strong law of small numbers" is the humorous law that proclaims, in the words of Richard K. Guy (1988):[1]

There aren't enough small numbers to meet the many demands made of them.

In other words, any given small number appears in far more contexts than may seem reasonable, leading to many apparently surprising coincidences in mathematics, simply because small numbers appear so often and yet are so few. Earlier (1980) this "law" was reported by Martin Gardner.[2] Guy's subsequent 1988 paper of the same title gives numerous examples in support of this thesis. (This paper earned him the MAA Lester R. Ford Award.)

Second strong law of small numbers

Guy gives Moser's circle problem as an example. The number of points (n), chords (c) and regions (rG). The first five terms for the number of regions follow a simple sequence, broken by the sixth term.

Guy also formulated a second strong law of small numbers:

When two numbers look equal, it ain't necessarily so![3]

Guy explains this latter law by the way of examples: he cites numerous sequences for which observing the first few members may lead to a wrong guess about the generating formula or law for the sequence. Many of the examples are the observations of other mathematicians.[3]

One example Guy gives is the conjecture that is prime—in fact, a Mersenne prime—when is prime; but this conjecture, while true for = 2, 3, 5 and 7, fails for = 11 (and for many other values).

Another relates to the prime number race: primes congruent to 3 modulo 4 appear to be more numerous than those congruent to 1; however this is false, and first ceases being true at 26861.

A geometric example concerns Moser's circle problem (pictured), which appears to have the solution of for points, but this pattern breaks at and above .

See also

Notes

  1. ^ Guy, Richard K. (1988). "The strong law of small numbers" (PDF). The American Mathematical Monthly. 95 (8): 697–712. doi:10.2307/2322249. JSTOR 2322249.
  2. ^ Gardner, Martin (December 1980). "Patterns in primes are a clue to the strong law of small numbers". Mathematical Games. Scientific American. 243 (6): 18–28. JSTOR 24966473.
  3. ^ a b Guy, Richard K. (1990). "The second strong law of small numbers". Mathematics Magazine. 63 (1): 3–20. doi:10.2307/2691503. JSTOR 2691503.


Read other articles:

Halaman ini berisi artikel tentang saluran udara guna mentransmisikan listrik secara umum. Untuk saluran udara guna mentransmisikan listrik ke KRL, lihat Listrik aliran atas. Saluran listrik di Gloucestershire, Inggris Saluran listrik udara atau sering disebut Sutet adalah sebuah struktur yang digunakan dalam transmisi dan distribusi tenaga listrik untuk menghantarkan listrik ke tempat yang jauh. Saluran dapat terdiri dari satu atau lebih konduktor (umumnya kelipatan tiga) yang dipasang di me...

 

Filmfare Award for Best Director – TamilAwarded forBest Director in Tamil filmsCountryIndiaPresented byFilmfareFirst awardedP. Madhavan,Gnana Oli (1972)Currently held bySudha Kongara, Soorarai Pottru (2020-2021)WebsiteFilmfare Awards The Filmfare Best Director Award is given by the Filmfare magazine as part of its annual Filmfare Awards South for Tamil (Kollywood) films. The awards were extended to Best Director in 1972.[1] Superlatives Superlative Best Director – Tamil Most awar...

 

The HonourableJulia GillardMP Perdana Menteri Australia ke-27Masa jabatan24 Juni 2010 – 27 Juni 2013WakilWayne Swan PendahuluKevin RuddPenggantiKevin RuddPemimpin Partai BuruhMasa jabatan24 Juni 2010 – 27 Juni 2013WakilWayne Swan PendahuluKevin RuddPenggantiKevin RuddDeputi Perdana Menteri AustraliaMasa jabatan3 Desember 2007 – 24 Juni 2010Perdana MenteriKevin Rudd PendahuluMark VailePenggantiWayne SwanAnggota Parlemen Parlemen Australiadapil LalorPetahanaMula...

American jam band Trance fusion redirects here. For the album by Frank Zappa, see Trance-Fusion. For other uses, see Disco biscuits (disambiguation). The Disco BiscuitsThe Disco Biscuits performing at Red Rocks Amphitheatre 2010Background informationOriginPhiladelphia, Pennsylvania, U.S.GenresLivetronicapsytrancejam bandYears active1995–presentLabelsIndependent Label Group/Diamond RiggsMembersJon GutwilligMarc BrownsteinAllen AucoinAron MagnerPast membersSam AltmanWebsitediscobiscuits.com ...

 

Katedral PesaroKatedral Santa Maria Diangkat ke Surgabahasa Italia: Cattedrale di S. Maria AssuntaKatedral PesaroLokasiPesaroNegaraItaliaDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupanKeuskupan Agung Pesaro Katedral Pesaro (bahasa Italia: Duomo di Pesaro; Cattedrale di Santa Maria Assunta) adalah sebuah gereja katedral Katolik yang terletak di Pesaro, Marche , Italia, didedikasikan untuk Maria Diangkat ke Surga. Ini adalah tahta uskup a...

 

Road 83جاده 83Route informationPart of AH70 Length211 km (131 mi)Major junctionsFromDashli Borun, GolestanMajor intersections Road 22ToShahrood, Semnan Road 44 LocationCountryIranProvincesGolestan, SemnanMajor citiesGonbad, GolestanAzadshahr, Golestan Highway system Highways in Iran Freeways Road 83 is a road in Semnan connecting Shahrood to Azadshahr and Gonbad-e Qabus. It is the eastern North-South connection which passes the Alborz Mountains.[1] References ^ ن�...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Kawasan Konservasi Perairan Daerah Kabupaten Pulau Morotai (KKPD Kabupaten Pulau Morotai) adalah salah satu kawasan konservasi yang ada di Maluku Utara, Indonesia. Dalam pembagian administratif Indonesia, KKPD Kabupaten Pulau Morotai berada di wilayah administratif Kabupaten Pulau Morotai. Dasar hukum penetapannya adalah Surat Keputusan Bupati Pulau Morotai Nomor 523/42/PM/2012. Luas kawasan KKPD Kabupaten Pulau Morotai adalah 330 Hektare. KKPD Kabupaten Pulau Morotai termasuk kawasan konserv...

Poem by J.R.R Tolkien For the state of roving in search of chivalrous adventure, see knight-errant. Errantry is a three-page poem by J.R.R. Tolkien, first published in The Oxford Magazine in 1933.[T 1] It was included in revised and extended form in Tolkien's 1962 collection of short poems, The Adventures of Tom Bombadil. Donald Swann set the poem to music in his 1967 song cycle, The Road Goes Ever On. The poem has a complex metre, invented by Tolkien. It fits the tune of Gilbert and ...

 

بوريك تروفي 2018 تفاصيل السباقسلسلة29. بوريك تروفيمنافسةطواف أوروبا للدراجات 2018 1.2‏التاريخ3 مارس 2018المسافات156 كمالبلد كرواتيانقطة البدايةبوريكنقطة النهايةTar (Tar-Vabriga) [الإنجليزية]‏عدد المتسابقين في البداية173عدد المتسابقين في النهاية142متوسط السرعة45٫98 كم/سالمنصةالفا�...

 

German punitive operation in Belarus and Russia during World War II This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Operation Winterzauber – news · newspapers · books · scholar · JSTOR (February 2016) (Learn how and when to remove this message) Operation WinterzauberPart of Bandenbekämpfung in German-occupi...

Palace in Vienna, Austria Schönbrunn PalaceSchloss SchönbrunnSchönbrunn Palace in 2022Location within ViennaGeneral informationLocationHietzing, Vienna, AustriaCoordinates48°11′04″N 16°18′43″E / 48.184516°N 16.311865°E / 48.184516; 16.311865WebsiteOfficial site UNESCO World Heritage SiteOfficial namePalace and Gardens of SchönbrunnCriteriaCultural: i, ivReference786Inscription1996 (20th Session)Area160 ha (400 acres) Great Gallery Schönbrunn ...

 

Cet article concerne la région administrative italienne. Pour la région historique, voir Vénétie (région historique). Pour la ville en Alaska, voir Venetie. Pour les autres significations, voir Vénétie (homonymie). VénétieVeneto Héraldique Drapeau Administration Pays Italie Chef-lieu Venise Provinces 7 Communes 581 Président Mandat Luca Zaia (Ligue) 2020-2025 NUTS 1 ITD (Italie du nord-est) ISO 3166-2 IT-34 Démographie Population 4 904 184 hab. (30/09/2017) Den...

 

Concept in Bayesian statistics The highest-density 90% credible interval of a probability distribution Part of a series onBayesian statistics Posterior = Likelihood × Prior ÷ Evidence Background Bayesian inference Bayesian probability Bayes' theorem Bernstein–von Mises theorem Coherence Cox's theorem Cromwell's rule Principle of indifference Principle of maximum entropy Model building Weak prior ... Strong prior Conjugate prior Linear regression Empirical Bayes Hierarchical model Posterio...

2020年夏季奥林匹克运动会马来西亚代表團马来西亚国旗IOC編碼MASNOC马来西亚奥林匹克理事会網站olympic.org.my(英文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員30參賽項目10个大项旗手开幕式:李梓嘉和吳柳螢(羽毛球)[1][2]閉幕式:潘德莉拉(跳水)[3]獎牌榜排名第74 金牌 銀牌 銅�...

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

 

Questa voce sull'argomento singoli pop è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Come musicasingolo discograficoScreenshot tratto dal video del branoArtistaJovanotti Pubblicazione20 ottobre 2008 Durata3:51 Album di provenienzaSafari GenerePop EtichettaUniversal ProduttoreJovanotti Certificazioni originaliDischi d'oro Italia[2](vendite: 18 000+) Certificazioni FIMI (dal 2009...

Voce principale: Resistenza italiana. La Resistenza romana fu il movimento di liberazione che operò a Roma durante l'occupazione tedesca della città, durata dall'8 settembre 1943 (per la mancata difesa da parte dei vertici del Regio Esercito e dopo la battaglia di Porta San Paolo, del 10 settembre) al 4 giugno 1944, data della liberazione della città da parte degli Alleati. La resistenza coinvolse sia militari, sia un gran numero di cittadini romani, i quali si opposero, in modo palese o ...

 

1660 restoration of the monarchy in the British Isles This article is about an event and period in the history of England, Ireland, Scotland and Wales. For other uses, see Restoration (disambiguation). Stuart Restoration1660–1714King Charles II in coronation robes by John Michael WrightMonarch(s)Charles IIJames IIWilliam IIIMary IIAnneLeader(s)Thomas ParkerChronology Interregnum Georgian era Periods in English history  Prehistoric Britainuntil c. 43 ADRoman Britainc. 43–410Sub-Roman ...