Strait is the Gate

First UK edition (publ. Jarrolds)
Cover design by Dame Laura Knight

Strait is the Gate (French: La Porte Étroite) is a 1909 French novel written by André Gide. It was translated into English by Dorothy Bussy. It probes the complexities and terrors of adolescence and growing up. Based on a Freudian interpretation, the story uses the influences of childhood experience and the misunderstandings that can arise between two people. Strait is the Gate taps the unassuaged memory of Gide's unsuccessful wooing of his cousin between 1888 and 1891.[1]

Much of the story is written as an epistolary novel between the Protagonist Jerome and his love Alissa. Much of the end of the novel is taken up by an exploration into Alissa's journal that details most of the events of the novel from her perspective.

Plot

The story is set in a French north coast town. Jerome and Alissa, cousins, as 10- to 11-year-olds make an implicit commitment of undying affection for each other. However, in reaction to her mother's infidelities and from an intense religious impression, Alissa develops a rejection of human love. Nevertheless, she is happy to enjoy Jerome's intellectual discussions and keeps him hanging on to her affection. Jerome thereby fails to recognize the real love of Alissa's sister Juliette, who ends up making a fairly unsatisfactory marriage with M. Tessiere as a sacrifice to her sister Alissa's love for Jerome. Jerome believes he has a commitment of marriage from Alissa, but she gradually withdraws into greater religious intensity, rejects Jerome and refuses to see him for longer and longer stretches of time. Eventually she dies in Paris from an unknown malady which is almost self-imposed. The ending of the novel occurs ten years after Alissa's death with the meeting of Jerome and Juliette. Juliette seems content to have a happy life with five children and a husband, but their conversation together in a room that resembles Alissa's concerns whether or not one can hold onto a love that is unrequited; as Jerome still loves Alissa, so it would seem that Juliette still loves Jerome, though both loves are equally as impossible.

Comparison with "The Immoralist"

Alissa reached, by going the other way round the world, a damnation very similar to the Immoralist's – indeed, Strait is the Gate might be called The Moralist. Hers is a greater perversity than Michel's, who, after all, was only doing as liked. Alissa is doing what she does not like, and at each act of monstrous virtue her anguish increases, 'till at last it kills her. And yet, her vision of heavenly joy is so surpassingly beautiful as almost to justify its means. In the limited sense in which the Immoralist was right in sinning for earthly joy, Alissa was justified in sinning to achieve her view of heaven. And each pays the exact price – spiritual death for Michel, bodily death and worse for Alissa. 'Whom can I persuade that this book is the twin of The Immoralist,' Gide wrote in his journal, 'that the two subjects grew up together in my mind, the excess of the one finding a secret permission in the excess of the other, so that the two together form an equipoise?"[1]

Title

The title refers to a phrase in the Gospel of Luke in the Bible:[2]

Strive to enter in at the strait gate: for many, I say unto you, will seek to enter in, and shall not be able.

This verse appears at the end of the first chapter as the subject of a sermon on the Sunday after Alissa's mother runs away with another man. During this sermon Jerome resolves to become virtuous enough to deserve Alissa. However Alissa ultimately interprets the "strait and narrow" to preclude any earthly happiness that Jerome and she could share in marriage.

The problem here being that the gate of virtue is too narrow for two people, too narrow for love, and too narrow for two people in love. Alissa so deliriously desires that even though she loves Jerome, this love between them has become, in her mind, his impediment to virtue. She rejects him, time and time again, and yet this is the way in which she expresses love, because this is the only way he would enter the strait gate. What Alissa longs for, is not the strait gate itself, but the process of getting through the gate - it is the striving in “strive to enter in at the strait gate”.

If either the strait gate of virtue or Jerome’s love were no more, Alissa’s desire would still stand. This is because it is not that we desire “something,” but that our desires and what we desire are ultimately a situation, a process, in which overall, something becomes the object of desire.[3]

References

  1. ^ a b "Andre Gide - Strait Is The Gate Critical Studies". www.andregide.org. Archived from the original on 2008-11-03. Retrieved 2016-10-13.
  2. ^ Bible (King James)/Luke#13:24  – via Wikisource.
  3. ^ "魔金石空间 MAGICIAN SPACE". www.magician-space.com. Retrieved 2016-10-13.

Read other articles:

Penyuntingan Artikel oleh pengguna baru atau anonim untuk saat ini tidak diizinkan hingga 3 Desember 2024.Lihat kebijakan pelindungan dan log pelindungan untuk informasi selengkapnya. Jika Anda tidak dapat menyunting Artikel ini dan Anda ingin melakukannya, Anda dapat memohon permintaan penyuntingan, diskusikan perubahan yang ingin dilakukan di halaman pembicaraan, memohon untuk melepaskan pelindungan, masuk, atau buatlah sebuah akun. Untuk kegunaan lain, lihat Boomerang (disambiguasi). Boome...

 

 

Iguana Iguana hijau (Iguana iguana) Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Sauropsida Ordo: Squamata Subordo: Iguania Famili: Iguanidae Genus: IguanaLaurenti, 1768 Spesies Iguana Antilles Kecil, I. delicatissima Iguana Hijau, I. iguana Untuk kegunaan lain, lihat Iguana. Iguana adalah marga kadal yang hidup di daerah tropis Amerika Tengah, Amerika Selatan, dan kepulauan Karibia. Kadal-kadal ini dideskripsikan pertama kali oleh seorang ahli hewan berkebangsaan Austria, Jo...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Sebuah gedung gereja di Katoomba, Australia, diubah menjadi tempat makan Dekonsekrasi adalah tindak pelepasan berkait relijius dari suatu hal yang sebelumnya ditahbiskan oleh pendeta atau imam dari suatu agama. Prakte tersebut biasanya dilakukan terha...

ChuggingtonBerkas:Chuggington logo.JPGNama alternatifChuggington: Tales from the Rails (Series 6)Pengisi suaraMorgan OvertonEdward SharpeTeddy WestCharlie GeorgeToby DaviesHarry ReeveImogen BaileyAlyssa BurtonJadie Rose HobsonLola ShepelevArthur LeeLawrence MatthewsPax BaldwinSacha DhawanDavid GyasiElëna GyasiMaria DarlingNicole DavisColin McFarlaneLorelei KingJordan ClarkeAngelo ColaAndy NymanPaul PantingJill ShillingSteve DevereauxJames NaylorNaratorSacha DhawanPenggubah lagu temaChris Mc...

 

 

Nue

Untuk pengertian lain, lihat NUE. Kuniyoshi Utagawa, Taiba (Akhir), 1852. Cetakan yang menggambarkan nue turun di atas Istana Kerajaan dengan awan hitam. Nue (鵺code: ja is deprecated ) adalah makhluk mitologis dalam cerita rakyat Jepang. Ia dideskripsikan sebagai makhluk berkepala monyet, bertubuh tanuki (anjing rakun), berkaki macan, dan berekor ular. Menurut legenda, seekor nue dapat berubah bentuk menjadi awan hitam lalu terbang. Karena penampilannya, kadang kala ia disebut sebagai khime...

 

 

This article is about the concept of purely evil spirits in Islamic cosmology. For the specific devil in Islam, see Iblis. Devils in Islam Shaytan and Sheitan redirect here. For other uses, see Shaitan (disambiguation). Depiction of a shaitan by Siyah Qalam, c. 14th/15th century. The art-style of Uighur or Central Asia origin was used by Muslim Turks to depict various legendary beings.[1] A shaitan or shaytan (Arabic: شَيْطَان, romanized: shayṭān; pl.: شَيَاطِي...

Major area of military events, 1942–1945 For naval operations in the Southwest Pacific area, including the Dutch East Indies, the Philippines, the Solomon Islands, and New Guinea, see South West Pacific theatre. For the overall military theater in Asia and the Pacific, see Pacific War. For other uses, see Pacific Theatre The Western Allies' command structure in the Pacific vteCampaigns of World War IIEurope Poland Phoney War Finland Winter War Karelia Lapland Denmark and Norway We...

 

 

ABC News NowDiluncurkan26 Juli 2004 (2004-07-26)Ditutup28 Oktober 2013 (2013-10-28)JaringanDisney-ABC Television GroupPemilikThe Walt Disney CompanyNegaraAmerika SerikatDigantikan olehFusion ABC News Now adalah sebuah saluran berita 24-jam asal Amerika Serikat yang dapat diakses melalui televisi digital, broadband dan video streaming di ABCNews.com dan ponsel.[1] Saluran ini menyampaikan berita, berita utama setiap setengah jam, dan berbagai program hiburan dan gaya hidup. S...

 

 

The New Zealand–China Free Trade Agreement is a bilateral free trade agreement signed between the People's Republic of China and New Zealand in April 2008. It is the first free trade agreement that China has signed with any developed country, and New Zealand's largest trade deal since the 1983 Closer Economic Relations agreement with Australia.[1] The New Zealand-China FTA was signed on 7 April 2008 in Beijing, after negotiations that spanned fifteen rounds over three years. It ente...

Letusan Eyjafjallajökull Letusan gunung berapi Eyjafjallajökull pada 14 April 2010 telah memengaruhi berbagai kegiatan ekonomi, politik, dan budaya di Eropa dan seluruh dunia. Terjadi gangguan perjalanan udara yang luas yang disebabkan oleh tertutupnya wilayah udara di banyak negara. Hal in memengaruhi rencana perjalanan ratusan ribu orang di Eropa dan tempat-tempat lainnya. Banyak acara olahraga dan hiburan yang dibatalkan, juga rencana perjalanan kenegaraan berbagai politisi dan anggota k...

 

 

School district in the U.S. state of New York This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (September 2022) (Learn how and when to remove this message) This ...

 

 

Questa voce o sezione sull'argomento storia è ritenuta da controllare. Motivo: la pagina è frutto di una interpretazione marxista dell'imperialismo e tralascia le questioni ideologiche e spirituali dell'imperialismo antico, specie romano, ulteriori inserimenti di informazioni non referenziate, possibili POV, inoltre molte frasi sono copiate dal manuale universitario Il Mondo Contemporaneo di Sabbatucci e Vidotto Partecipa alla discussione e/o correggi la voce. Segui i suggerimenti del...

Om Prakash KohliKohli pada 2016 Gubernur Gujarat ke-19Masa jabatan16 Juli 2014 – 15 Juli 2019Kepala MenteriAnandiben PatelVijay RupaniPendahuluMargaret AlvaPenggantiAcharya Dev VratGubernur Madhya PradeshMasa jabatan8 September 2016 – 19 Januari 2018Kepala MenteriShivraj Singh ChauhanPendahuluRam Naresh YadavPenggantiAnandiben PatelGubernur GoaMasa jabatan6 August 2014 – 25 August 2014Kepala MenteriManohar ParrikarPendahuluMargaret AlvaPenggantiMridula Sin...

 

 

Dutch politician and diplomat (1901–1956) His ExcellencyGerrit Jan van Heuven GoedhartGerrit Jan van Heuven Goedhart in 1944United Nations High Commissioner for RefugeesIn office1 January 1951 – 8 July 1956Secretary-GeneralTrygve Lie (1951–1952) Dag Hammarskjöld (1953–1956)Preceded byOffice establishedSucceeded byAugust R. LindtSenator of the NetherlandsIn office22 October 1947 – 1 January 1951Minister of JusticeIn office11 July 1944 – 23 February 1945P...

 

 

Lucas PopeBiographieNaissance 1977 ou 1978États-UnisNationalité américaineDomicile TokyoFormation Midlothian High School (en)Activité Développeur de jeux vidéoAutres informationsSite web dukope.comŒuvres principales Papers, Please, Return of the Obra Dinn, The Republia Times (d)modifier - modifier le code - modifier Wikidata Lucas Pope est un concepteur américain de jeu vidéo qui habite au Japon, rendu célèbre pour deux jeux indépendants qu'il a réalisés en tant que seul dévelo...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字(Microsoftコードページ932(はしご高))が含まれています(詳細)。 松山東雲短期大学 大学設置 1964年創立 1886年学校種別 私立設置者 学校法人松山東雲学園本部所在地 愛媛県松山市桑原三丁目2番1号学部 食物栄養学科保育科現代ビジネス学科研究科 なしウェブサイト https://www.shinonome.ac.jp/テンプレ�...

 

 

Poset representing certain properties of a polytope This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Abstract polytope – news · newspapers · books · scholar · JSTOR (April 2016) (Learn how and when to remove this message) A square pyramid and the associated abstract polytope. In mathematics, an abstract polyt...

 

 

Ponte di TrnovoLocalizzazioneStato Slovenia CittàLubiana AttraversaGradaščica Coordinate46°02′35.98″N 14°30′07.77″E46°02′35.98″N, 14°30′07.77″E Dati tecniciTipo[[]] RealizzazioneProgettistaJosef Melan CostruttoreCostruzioni Callisto Pontello Mappa di localizzazione Modifica dati su Wikidata · Manuale  Bene protetto dall'UNESCOOpere di Jože Plečnik a Lubiana - progettazione urbana centrata sull'uomo Patrimonio dell'umanità TipoCulturali Criterio(i...

Russian Bundist politician (1865–1935) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2023) (Learn how and when to remove this message) Part of a series onBundism 1890s to World War I General Jewish Labour Bund Offshoots Bukovina Galicia Sweden Argentina (First) United States Thessaloniki Interwar years and World War II Latvia Poland Romania Sovie...

 

 

Property of all triangles on a Euclidean plane This article is about the law of sines in trigonometry. For the law of sines in physics, see Snell's law. Law of SinesFigure 1, With circumcircleFigure 2, Without circumcircleTwo triangles labelled with the components of the law of sines. α, β and γ are the angles associated with the vertices at capital A, B, and C, respectively. Lower-case a, b, and c are the lengths of the sides opposite them. (a is opposite α, etc.) Trigonometry Outline Hi...