Stericated 5-simplexes


5-simplex

Stericated 5-simplex

Steritruncated 5-simplex

Stericantellated 5-simplex

Stericantitruncated 5-simplex

Steriruncitruncated 5-simplex

Steriruncicantitruncated 5-simplex
(Omnitruncated 5-simplex)
Orthogonal projections in A5 and A4 Coxeter planes

In five-dimensional geometry, a stericated 5-simplex is a convex uniform 5-polytope with fourth-order truncations (sterication) of the regular 5-simplex.

There are six unique sterications of the 5-simplex, including permutations of truncations, cantellations, and runcinations. The simplest stericated 5-simplex is also called an expanded 5-simplex, with the first and last nodes ringed, for being constructible by an expansion operation applied to the regular 5-simplex. The highest form, the steriruncicantitruncated 5-simplex is more simply called an omnitruncated 5-simplex with all of the nodes ringed.

Stericated 5-simplex

Stericated 5-simplex
Type Uniform 5-polytope
Schläfli symbol 2r2r{3,3,3,3}
2r{32,2} =
Coxeter-Dynkin diagram
or
4-faces 62 6+6 {3,3,3}
15+15 {}×{3,3}
20 {3}×{3}
Cells 180 60 {3,3}
120 {}×{3}
Faces 210 120 {3}
90 {4}
Edges 120
Vertices 30
Vertex figure
Tetrahedral antiprism
Coxeter group A5×2, [[3,3,3,3]], order 1440
Properties convex, isogonal, isotoxal

A stericated 5-simplex can be constructed by an expansion operation applied to the regular 5-simplex, and thus is also sometimes called an expanded 5-simplex. It has 30 vertices, 120 edges, 210 faces (120 triangles and 90 squares), 180 cells (60 tetrahedra and 120 triangular prisms) and 62 4-faces (12 5-cells, 30 tetrahedral prisms and 20 3-3 duoprisms).

Alternate names

  • Expanded 5-simplex
  • Stericated hexateron
  • Small cellated dodecateron (Acronym: scad) (Jonathan Bowers)[1]

Cross-sections

The maximal cross-section of the stericated hexateron with a 4-dimensional hyperplane is a runcinated 5-cell. This cross-section divides the stericated hexateron into two pentachoral hypercupolas consisting of 6 5-cells, 15 tetrahedral prisms and 10 3-3 duoprisms each.

Coordinates

The vertices of the stericated 5-simplex can be constructed on a hyperplane in 6-space as permutations of (0,1,1,1,1,2). This represents the positive orthant facet of the stericated 6-orthoplex.

A second construction in 6-space, from the center of a rectified 6-orthoplex is given by coordinate permutations of:

(1,-1,0,0,0,0)

The Cartesian coordinates in 5-space for the normalized vertices of an origin-centered stericated hexateron are:

Root system

Its 30 vertices represent the root vectors of the simple Lie group A5. It is also the vertex figure of the 5-simplex honeycomb.

Images

orthographic projections
Ak
Coxeter plane
A5 A4
Graph
Dihedral symmetry [6] [[5]]=[10]
Ak
Coxeter plane
A3 A2
Graph
Dihedral symmetry [4] [[3]]=[6]

orthogonal projection with [6] symmetry

Steritruncated 5-simplex

Steritruncated 5-simplex
Type Uniform 5-polytope
Schläfli symbol t0,1,4{3,3,3,3}
Coxeter-Dynkin diagram
4-faces 62 6 t{3,3,3}
15 {}×t{3,3}
20 {3}×{6}
15 {}×{3,3}
6 t0,3{3,3,3}
Cells 330
Faces 570
Edges 420
Vertices 120
Vertex figure
Coxeter group A5 [3,3,3,3], order 720
Properties convex, isogonal

Alternate names

  • Steritruncated hexateron
  • Celliprismated hexateron (Acronym: cappix) (Jonathan Bowers)[2]

Coordinates

The coordinates can be made in 6-space, as 180 permutations of:

(0,1,1,1,2,3)

This construction exists as one of 64 orthant facets of the steritruncated 6-orthoplex.

Images

orthographic projections
Ak
Coxeter plane
A5 A4
Graph
Dihedral symmetry [6] [5]
Ak
Coxeter plane
A3 A2
Graph
Dihedral symmetry [4] [3]

Stericantellated 5-simplex

Stericantellated 5-simplex
Type Uniform 5-polytope
Schläfli symbol t0,2,4{3,3,3,3}
Coxeter-Dynkin diagram
or
4-faces 62 12 rr{3,3,3}
30 rr{3,3}x{}
20 {3}×{3}
Cells 420 60 rr{3,3}
240 {}×{3}
90 {}×{}×{}
30 r{3,3}
Faces 900 360 {3}
540 {4}
Edges 720
Vertices 180
Vertex figure
Coxeter group A5×2, [[3,3,3,3]], order 1440
Properties convex, isogonal

Alternate names

  • Stericantellated hexateron
  • Cellirhombated dodecateron (Acronym: card) (Jonathan Bowers)[3]

Coordinates

The coordinates can be made in 6-space, as permutations of:

(0,1,1,2,2,3)

This construction exists as one of 64 orthant facets of the stericantellated 6-orthoplex.

Images

orthographic projections
Ak
Coxeter plane
A5 A4
Graph
Dihedral symmetry [6] [[5]]=[10]
Ak
Coxeter plane
A3 A2
Graph
Dihedral symmetry [4] [[3]]=[6]

Stericantitruncated 5-simplex

Stericantitruncated 5-simplex
Type Uniform 5-polytope
Schläfli symbol t0,1,2,4{3,3,3,3}
Coxeter-Dynkin diagram
4-faces 62
Cells 480
Faces 1140
Edges 1080
Vertices 360
Vertex figure
Coxeter group A5 [3,3,3,3], order 720
Properties convex, isogonal

Alternate names

  • Stericantitruncated hexateron
  • Celligreatorhombated hexateron (Acronym: cograx) (Jonathan Bowers)[4]

Coordinates

The coordinates can be made in 6-space, as 360 permutations of:

(0,1,1,2,3,4)

This construction exists as one of 64 orthant facets of the stericantitruncated 6-orthoplex.

Images

orthographic projections
Ak
Coxeter plane
A5 A4
Graph
Dihedral symmetry [6] [5]
Ak
Coxeter plane
A3 A2
Graph
Dihedral symmetry [4] [3]

Steriruncitruncated 5-simplex

Steriruncitruncated 5-simplex
Type Uniform 5-polytope
Schläfli symbol t0,1,3,4{3,3,3,3}
2t{32,2}
Coxeter-Dynkin diagram
or
4-faces 62 12 t0,1,3{3,3,3}
30 {}×t{3,3}
20 {6}×{6}
Cells 450
Faces 1110
Edges 1080
Vertices 360
Vertex figure
Coxeter group A5×2, [[3,3,3,3]], order 1440
Properties convex, isogonal

Alternate names

  • Steriruncitruncated hexateron
  • Celliprismatotruncated dodecateron (Acronym: captid) (Jonathan Bowers)[5]

Coordinates

The coordinates can be made in 6-space, as 360 permutations of:

(0,1,2,2,3,4)

This construction exists as one of 64 orthant facets of the steriruncitruncated 6-orthoplex.

Images

orthographic projections
Ak
Coxeter plane
A5 A4
Graph
Dihedral symmetry [6] [[5]]=[10]
Ak
Coxeter plane
A3 A2
Graph
Dihedral symmetry [4] [[3]]=[6]

Omnitruncated 5-simplex

Omnitruncated 5-simplex
Type Uniform 5-polytope
Schläfli symbol t0,1,2,3,4{3,3,3,3}
2tr{32,2}
Coxeter-Dynkin
diagram

or
4-faces 62 12 t0,1,2,3{3,3,3}
30 {}×tr{3,3}
20 {6}×{6}
Cells 540 360 t{3,4}
90 {4,3}
90 {}×{6}
Faces 1560 480 {6}
1080 {4}
Edges 1800
Vertices 720
Vertex figure
Irregular 5-cell
Coxeter group A5×2, [[3,3,3,3]], order 1440
Properties convex, isogonal, zonotope

The omnitruncated 5-simplex has 720 vertices, 1800 edges, 1560 faces (480 hexagons and 1080 squares), 540 cells (360 truncated octahedra, 90 cubes, and 90 hexagonal prisms), and 62 4-faces (12 omnitruncated 5-cells, 30 truncated octahedral prisms, and 20 6-6 duoprisms).

Alternate names

  • Steriruncicantitruncated 5-simplex (Full description of omnitruncation for 5-polytopes by Johnson)
  • Omnitruncated hexateron
  • Great cellated dodecateron (Acronym: gocad) (Jonathan Bowers)[6]

Coordinates

The vertices of the omnitruncated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,1,2,3,4,5). These coordinates come from the positive orthant facet of the steriruncicantitruncated 6-orthoplex, t0,1,2,3,4{34,4}, .

Images

orthographic projections
Ak
Coxeter plane
A5 A4
Graph
Dihedral symmetry [6] [[5]]=[10]
Ak
Coxeter plane
A3 A2
Graph
Dihedral symmetry [4] [[3]]=[6]
Stereographic projection

Permutohedron

The omnitruncated 5-simplex is the permutohedron of order 6. It is also a zonotope, the Minkowski sum of six line segments parallel to the six lines through the origin and the six vertices of the 5-simplex.


Orthogonal projection, vertices labeled as a permutohedron.

The omnitruncated 5-simplex honeycomb is constructed by omnitruncated 5-simplex facets with 3 facets around each ridge. It has Coxeter-Dynkin diagram of .

Coxeter group
Coxeter-Dynkin
Picture
Name Apeirogon Hextille Omnitruncated
3-simplex
honeycomb
Omnitruncated
4-simplex
honeycomb
Omnitruncated
5-simplex
honeycomb
Facets

Full snub 5-simplex

The full snub 5-simplex or omnisnub 5-simplex, defined as an alternation of the omnitruncated 5-simplex is not uniform, but it can be given Coxeter diagram and symmetry [[3,3,3,3]]+, and constructed from 12 snub 5-cells, 30 snub tetrahedral antiprisms, 20 3-3 duoantiprisms, and 360 irregular 5-cells filling the gaps at the deleted vertices.

These polytopes are a part of 19 uniform 5-polytopes based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)

A5 polytopes

t0

t1

t2

t0,1

t0,2

t1,2

t0,3

t1,3

t0,4

t0,1,2

t0,1,3

t0,2,3

t1,2,3

t0,1,4

t0,2,4

t0,1,2,3

t0,1,2,4

t0,1,3,4

t0,1,2,3,4

Notes

  1. ^ Klitizing, (x3o3o3o3x - scad)
  2. ^ Klitizing, (x3x3o3o3x - cappix)
  3. ^ Klitizing, (x3o3x3o3x - card)
  4. ^ Klitizing, (x3x3x3o3x - cograx)
  5. ^ Klitizing, (x3x3o3x3x - captid)
  6. ^ Klitizing, (x3x3x3x3x - gocad)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "5D uniform polytopes (polytera)". x3o3o3o3x - scad, x3x3o3o3x - cappix, x3o3x3o3x - card, x3x3x3o3x - cograx, x3x3o3x3x - captid, x3x3x3x3x - gocad
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds

Read other articles:

LauvLauv, 2019LahirAri Staprans Leff08 Agustus 1994 (umur 29)[1]San Francisco, California, A.S.AlmamaterNew York UniversityPekerjaan Penyanyi penulis lagu produser rekaman Tahun aktif2015–sekarangKarier musikGenre Pop[2][3] electropop[2] R&B[2] Instrumen Vokal gitar piano drum biola LabelAWALSitus weblauvsongs.com Ari Staprans Leff (lahir 8 Agustus 1994), yang dikenal secara profesional sebagai Lauv, adalah penyanyi, penulis lagu, dan p...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 �...

 

Cantika AbigailCantika pada tahun 2018LahirCantika Abigail Santoso12 Juli 1993 (umur 30)Jakarta, IndonesiaKebangsaanIndonesiaAlmamaterUniversitas Pelita HarapanPekerjaanPenyanyi-penulis lagupembawa acara televisiaktrispenyiar radioTahun aktif2008—sekarangOrang tuaJean Pattikawa (ibu)Keluarga Chris Pattikawa (kakek) Rina Hassim (nenek) PenghargaanDaftar penghargaanKarier musikGenreR&Bkontemporer urbanInstrumenVokalLabelSonyArtis terkaitGamaliel Audrey CantikaTanda tangan Canti...

  لمعانٍ أخرى، طالع نادي الاتفاق (توضيح). الاتفاق الاسم الكامل نادي الاتفاق لكرة القدم تأسس عام 2020 الملعب دبي، الإمارات العربية المتحدة البلد الإمارات العربية المتحدة  الدوري دوري الدرجة الثانية الإماراتي الإدارة المدير تعديل مصدري - تعديل   نادي الاتفاق نادي كر�...

 

Quintus Curtius Rufus BiografiKelahiran1 abad nilai tidak diketahui Kematian1 abad M Afrika KegiatanPekerjaansejarawan, penulis, politikus PeriodeHigh Roman Empire (en) Periode aktif(Floruit (en): 1 abad )Karya kreatifKarya terkenal(40 dekade M) Histories of Alexander the Great (en) Quintus Curtius Rufus adalah seorang sejarawan Romawi yang kemungkinan menulis saat pemerintahan Keaisar Claudius (41–54 M) atau Vespasian (69–79 M). Historiae Alexandri Magni karya Curtius meraih...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains wording that promotes the subject in a subjective manner without imparting real information. Please remove or replace such wording and instead of making proclamations about a subject's importance, use facts and attribution to demonstrate that importance. (February 2012) (Learn how and when to remove this template messag...

Untuk lagu bernama sama karya The Cranberries, lihat Wake Up and Smell the Coffee. Untuk lagu bernama sama karya Jerry Cantrell, lihat Degradation Trip Vol 1 & 2. Dying Inside Berkas:DyingInside(1stEd).jpgSampul edisi pertama (sampul keras)PengarangRobert SilverbergNegaraAmerika SerikatBahasaInggrisGenreFiksi ilmiahPenerbitCharles Scribner's SonsTanggal terbit1972Jenis mediaCetak (Sampul keras & Sampul kertas)Halaman245ISBNISBN 0-684-13083-1OCLC524029Desimal Dewey813/.5...

 

County in North Dakota, United States County in North DakotaBurleigh CountyCountyBurleigh County Courthouse SealLocation within the U.S. state of North DakotaNorth Dakota's location within the U.S.Coordinates: 46°59′N 100°28′W / 46.98°N 100.47°W / 46.98; -100.47Country United StatesState North DakotaFoundedJanuary 4, 1873Named forWalter A. BurleighSeatBismarckLargest cityBismarckArea • Total1,668 sq mi (4,320 km2) •&#...

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2023) ماجونغ سولوسط الصورة: لافتة اعلانية للعبة ماجونغ سول وشخصيتها الرئيسية إيتشي-هيمي على أحد المباني في منطقة أكيهابارا في اليابان.雀魂(Jantama)صنفرياضة (ماجونغ ي�...

 

  ميّز عن محمد بن صالح العثيمين. صالح بن عبد العزيز آل عثيمين معلومات شخصية الميلاد سنة 1902   بريدة  الوفاة 14 يوليو 1990 (87–88 سنة)  مكة المكرمة  مكان الدفن مقبرة العدل  مواطنة الدولة السعودية الثالثة السعودية  الحياة العملية المهنة فقيه،  وشاعر،  ومؤر...

 

Армин Хофманн, Плакат для Кунстхалле Базеля, 1959 г. Эта статья о «Швейцарском стиле» в графическом дизайне. Об архитектуре см. Швейцарский стиль шале. Швейцарский стиль (также Swiss style, Швейцарская школа, Швейцарский дизайн) — направление в графическом дизайне, сформир�...

طواف الدنمارك 2021 تفاصيل السباقسلسلة30. طواف الدنماركمنافسةسلسلة سباقات الاتحاد الدولي للدراجات للمحترفين 2021 2.Pro‏مراحل5التواريخ10 – 14 أغسطس 2021المسافات783٫3 كمالبلد الدنماركنقطة البدايةStruer, Denmark [الإنجليزية]‏نقطة النهايةفردريكسبرغالفرق19عدد المتسابقين في البداية131�...

 

Foreign policy doctrine of Ukrainian President Leonid Kuchma Ukrainian President Leonid Kuchma (right) with Russian President Vladimir Putin, 2003. The Multi-Vector Policy supported improved relations between Ukraine and Russia This article is part of a series about Leonid Kuchma Political positions [uk] Family and personal life PA Pivdenmash Ukrainian oligarchs Dnipropetrovsk Mafia 2nd Prime Minister of Ukraine(government) Privatisation [uk] Decrees [uk]...

 

Human settlement in EnglandTolworthAlexandra Recreation Ground, with the Tolworth Tower in the distanceTolworthLocation within Greater LondonPopulation9,833 (From 2016)[1]OS grid referenceTQ197659London boroughKingstonCeremonial countyGreater LondonRegionLondonCountryEnglandSovereign stateUnited KingdomPost townSURBITONPostcode districtKT5, KT6Dialling code020PoliceMetropolitanFireLondonAmbulanceLondon UK ParliamentKingston & SurbitonL...

Election in Indiana Main article: 1912 United States presidential election 1912 United States presidential election in Indiana ← 1908 November 5, 1912 1916 →   Nominee Woodrow Wilson Theodore Roosevelt Party Democratic Progressive Home state New Jersey New York Running mate Thomas R. Marshall Hiram Johnson Electoral vote 15 0 Popular vote 281,890 162,007 Percentage 43.07% 24.75%   Nominee William Howard Taft Eugene V. Debs Party Republican S...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) واقعمعلومات عامةيدرسه علم الوجودفلسفة ممثلة بـ وجودactuality (en) النقيض subjective reality (en) تعديل - تعديل مصدري - تعديل...

 

Mountain range in Colorado, United States Cochetopa HillsWindy Peak along the Continental Divide in the Cochetopa HillsHighest pointPeakLong Branch BaldyElevation11,974 ft (3,650 m)Coordinates38°19′20″N 106°28′26″W / 38.3221025°N 106.4738221°W / 38.3221025; -106.4738221[1]GeographyCochetopa Hills CountryUnited StatesStateColoradoCountySaguache[2]Parent rangeSan Juan Mountains, Rocky Mountains The Cochetopa Hills[3] are...

Institutional corruption in the country Political corruption Forms and concepts Bribery Cronyism Economics of corruption Electoral fraud Elite capture Influence peddling Kleptocracy Mafia state Nepotism Pyrrhic defeat theory Slush fund Simony State capture State-corporate crime Throffer Anti-corruption International Anti-Corruption Court Group of States Against Corruption International Anti-Corruption Academy International Anti-Corruption Day United Nations Convention against Corruption Corru...

 

Gerhard Dorn (c. 1530 – 1584) was a Belgian philosopher, translator, alchemist, physician and bibliophile. Biography The details of Gerhard Dorn's early life, along with those of many other 16th century personalities, are lost to history. It is known that he was born about 1530 in Mechelen, which is part of modern-day Belgium's Antwerp Province. He studied with Adam von Bodenstein, to whom his first book is dedicated and began publishing books from around 1565. He used John Dee's perso...