Star height problem

The star height problem in formal language theory is the question whether all regular languages can be expressed using regular expressions of limited star height, i.e. with a limited nesting depth of Kleene stars. Specifically, is a nesting depth of one always sufficient? If not, is there an algorithm to determine how many are required? The problem was first introduced by Eggan in 1963.[1]

Families of regular languages with unbounded star height

The first question was answered in the negative when in 1963, Eggan gave examples of regular languages of star height n for every n. Here, the star height h(L) of a regular language L is defined as the minimum star height among all regular expressions representing L. The first few languages found by Eggan are described in the following, by means of giving a regular expression for each language:

The construction principle for these expressions is that expression is obtained by concatenating two copies of , appropriately renaming the letters of the second copy using fresh alphabet symbols, concatenating the result with another fresh alphabet symbol, and then by surrounding the resulting expression with a Kleene star. The remaining, more difficult part, is to prove that for there is no equivalent regular expression of star height less than n; a proof is given in Eggan (1963).

However, Eggan's examples use a large alphabet, of size 2n-1 for the language with star height n. He thus asked whether we can also find examples over binary alphabets. This was proved to be true shortly afterwards by Dejean and Schützenberger in 1966.[2] Their examples can be described by an inductively defined family of regular expressions over the binary alphabet as follows–cf. Salomaa (1981):

Again, a rigorous proof is needed for the fact that does not admit an equivalent regular expression of lower star height. Proofs are given by Dejean & Schützenberger (1966) and by Salomaa (1981).

Computing the star height of regular languages

In contrast, the second question turned out to be much more difficult, and the question became a famous open problem in formal language theory for over two decades.[3] For years, there was only little progress. The pure-group languages were the first interesting family of regular languages for which the star height problem was proved to be decidable.[4] But the general problem remained open for more than 25 years until it was settled by Hashiguchi, who in 1988 published an algorithm to determine the star height of any regular language.[5] The algorithm wasn't at all practical, being of non-elementary complexity. To illustrate the immense resource consumptions of that algorithm, Lombardy & Sakarovitch (2002) give some actual numbers:

[The procedure described by Hashiguchi] leads to computations that are by far impossible, even for very small examples. For instance, if L is accepted by a 4 state automaton of loop complexity 3 (and with a small 10 element transition monoid), then a very low minorant of the number of languages to be tested with L for equality is:

— S. Lombardy and J. Sakarovitch, Star Height of Reversible Languages and Universal Automata, LATIN 2002

Notice that alone the number has 10 billion zeros when written down in decimal notation, and is already by far larger than the number of atoms in the observable universe.

A much more efficient algorithm than Hashiguchi's procedure was devised by Kirsten in 2005.[6] This algorithm runs, for a given nondeterministic finite automaton as input, within double-exponential space. Yet the resource requirements of this algorithm still greatly exceed the margins of what is considered practically feasible.

This algorithm has been optimized and generalized to trees by Colcombet and Löding in 2008,[7] as part of the theory of regular cost functions. It has been implemented in 2017 in the tool suite Stamina.[8]

See also

Notes

References

  • Brzozowski, Janusz A. (1980). "Open problems about regular languages". In Book, Ronald V. (ed.). Formal language theory—Perspectives and open problems. New York: Academic Press. pp. 23–47. ISBN 978-0-12-115350-2. (technical report version)
  • Colcombet, Thomas; Löding, Christof (2008). "The Nesting-Depth of Disjunctive μ-Calculus for Tree Languages and the Limitedness Problem". Computer Science Logic. Lecture Notes in Computer Science. Vol. 5213. pp. 416–430. doi:10.1007/978-3-540-87531-4_30. ISBN 978-3-540-87530-7. ISSN 0302-9743.
  • Dejean, Françoise; Schützenberger, Marcel-Paul (1966). "On a Question of Eggan". Information and Control. 9 (1): 23–25. doi:10.1016/S0019-9958(66)90083-0.
  • Eggan, Lawrence C. (1963). "Transition graphs and the star-height of regular events". Michigan Mathematical Journal. 10 (4): 385–397. doi:10.1307/mmj/1028998975. Zbl 0173.01504.
  • McNaughton, Robert (1967). "The Loop Complexity of Pure-Group Events". Information and Control. 11 (1–2): 167–176. doi:10.1016/S0019-9958(67)90481-0.
  • Salomaa, Arto (1981). Jewels of Formal Language Theory. Melbourne: Pitman Publishing. ISBN 978-0-273-08522-5. Zbl 0487.68063.

Further reading

Read other articles:

Doris KenyonKenyon tahun 1926Lahir(1897-09-05)5 September 1897Syracuse, New York, A.S.Meninggal1 September 1979(1979-09-01) (umur 81)Beverly Hills, California, A.S.MakamForest Lawn Memorial Park (Glendale)Tahun aktif1915–1962Suami/istriMilton Sills ​ ​(m. 1926; meninggal 1930)​ Arthur Hopkins ​ ​(m. 1933; annulled 1934)​ Albert D. Lasker ​ ​(m. 1938; c....

 

This is a list of Minoan, Mycenaean, and related frescos and quasi-frescos (not completed before the plaster dried) found at Bronze Age archaeological sites on islands and in and around the shores of the Aegean Sea and other relevant places in the Eastern Mediterranean region. In cases where one civilization encroaches on another or a mixture of civilizations is present, both names are used. Though culturally rather different, the Wall Paintings of Thera are regarded as part of Minoan art; a...

 

Diskografi MBLAQMBLAQ tampil di Festival Musik Cyworld Dream pada tanggal 23 Juli 2011Album studio1Album kompilasi2Album video4Video musik16Extended play8Singel21Album soundtrack11 Diskografi dari boy band asal Korea Selatan MBLAQ yang berisikan satu album studio, delapan mini album, dua album kompilasi, dan 21 lagu. MBLAQ telah berkecimpung dalam bisnis musik sejak melakukan debut live mereka di M! Countdown pada saluran Mnet dengan lagu debut mereka, Oh Yeah pada tanggal 14 Oktober 2009. Al...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Reruntuhan tembok Benteng Toboali yang menghadap laut Benteng Toboali adalah benteng peninggalan pada masa penjajahan belanda yang terletak di kota Toboali, Kabupaten Bangka Selatan, Provinsi Kepulauan Bangka-Belitung. Letaknya dekat Polsek Toboali tepat di belakang kantor Polsek. Benteng ini berfungsi untuk melindungi pertambangan timah dari serangan dari arah laut. Kemudian beralih ke penguasaan Jepang pada tahun 1943 hingga 1945 Arsitektur benteng Toboali di sisi kiri terdapat bangunan yan...

 

For the album by Fat Pat, see Ghetto Dreams (album). 2011 single by Common featuring NasGhetto DreamsSingle by Common featuring Nasfrom the album The Dreamer/The Believer ReleasedJuly 6, 2011 (2011-07-06)Recorded2011GenreHip hopLength3:58LabelWarner Bros., Think Common Music Inc.Songwriter(s)Lonnie Lynn, Nasir Jones, Ernest WilsonProducer(s)No I.D.Common singles chronology Make Her Say (2009) Ghetto Dreams (2011) Favorite Song (2012) Nas singles chronology Fall in Love(...

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

Thick foam pad used for protection when bouldering This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bouldering mat – news · newspapers · books · scholar · J...

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

  Службовий список статей, створений для координації робіт з розвитку теми.  Це попередження не встановлюється на інформаційні списки і глосарії. Це вибіркова сучасна бібліографія україномовних книг (включно з перекладами) та журнальних статей про ранньомоде...

 

  لمعانٍ أخرى، طالع روبي روبنسون (توضيح). روبي روبنسون معلومات شخصية الميلاد 22 أغسطس 1989 (35 سنة)  ويستبورت  [لغات أخرى]‏  مواطنة نيوزيلندا  أقرباء داميان ماكنزي (ابن العم/ه أو الخال/ه)مارتي ماكنزي (ابن العم/ه أو الخال/ه)  الحياة العملية المهنة لاعب اتحاد ال...

 

William G. WebsterBorn (1951-07-03) July 3, 1951 (age 72)Baton Rouge, Louisiana[1]AllegianceUnited StatesService/branchUnited States ArmyYears of service1974–2011[1]RankLieutenant General[2]Commands heldUnited States Army CentralNational Training Center3rd Infantry DivisionBattles/warsIraq WarAwardsDefense Distinguished Service Medal (2)Army Distinguished Service Medal (2)Defense Superior Service MedalLegion of Merit (5)Bronze Star Medal (2) Lieutenant Gen...

Zeidae Zeus capensis Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Kelas: Actinopterygii Ordo: Zeiformes Famili: ZeidaeLatreille, 1825 Genus[1] Zenopsis Zeus Zeidae (berasal dari nama dewa dalam mitologi yunani, Zeus) atau juga disebut tetawak atau dori adalah keluarga ikan laut dalam ordo zeiformes yang besar, mencolok, dan bertubuh dalam. Famili ikan ini ditemukan di Samudra Atlantik, Hindia, dan Pasifik, famili ini hanya berisi enam spesies dalam dua genu...

 

مقاطعة تاوس     الإحداثيات 36°34′N 105°38′W / 36.57°N 105.63°W / 36.57; -105.63   [1] تاريخ التأسيس 9 يناير 1852  سبب التسمية تاوس  تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى نيومكسيكو  العاصمة تاوس  التقسيمات الإدارية تاوس  خصائص جغ...

 

American computer scientist and activist Valerie AuroraBornVal HensonUnited StatesAlma materNew Mexico Institute of Mining and TechnologyOccupationFeminist activistKnown forFounder of the Ada InitiativeAwardsO'Reilly Open Source AwardWebsiteOfficial website Valerie Anita Aurora[1] is an American software engineer and feminist activist. She was the co-founder of the Ada Initiative,[2] a non-profit organization that sought to increase women's participation in the free...

باناسيا   الأب أسقليبيوس[1]  الأم إبيون  تعديل مصدري - تعديل   باناسيا (منتصف الصورة) تعطي الدواء لطفل (صورة للطبيب فيرونيس جي. غازولا كجزء من روسم (كليشة خشبية) أكبر في الميثولوجيا الإغريقية، باناسيا هي إلهة الدواء العام والعلاج العام الشامل.[2][3][4] �...

 

КоммунаБюзонBuzon Герб 43°26′42″ с. ш. 0°08′35″ в. д.HGЯO Страна  Франция Регион Юг — Пиренеи Департамент Верхние Пиренеи Кантон Рабастенс-де-Бигор Мэр Макс Виньола(2014—2020) История и география Площадь 4,4 км² Высота центра 156–260 м Часовой пояс UTC+1:00, летом UTC+2:00 Населени...

 

Education of children outside of a school Not to be confused with Distance education, Independent school, Out-of-school learning, or Autodidacticism. Homeschool and Home School redirect here. For the EP, see Homeschool (EP). For the novel, see Home School (novel). Educating children at home Homeschooling or home schooling (American English), also known as home education or elective home education (EHE) (British English),[1] is the education of school-aged children at home or a variety...

American college basketball season 2023–24 UC Santa Barbara Gauchos men's basketballConferenceBig West ConferenceRecord16–15 (9–11 Big West)Head coachJoe Pasternack (7th season)Assistant coaches Larry Lewis Derek Glasser Skye Ettin Brian Eskildsen Home arenaThe Thunderdome(Capacity: 5,000)Seasons← 2022–232024–25 → 2023–24 Big West men's basketball standings vte Conf Overall Team W   L   PCT W   L   PCT UC Irvine 17 – 3 ...

 

German footballer (1927-2008) Heinz Wewers Personal informationDate of birth (1927-07-27)27 July 1927Place of birth Gladbeck, GermanyDate of death 29 August 2008(2008-08-29) (aged 81)Position(s) DefenderSenior career*Years Team Apps (Gls)1949–1962 Rot-Weiss Essen International career1951–1958 West Germany 12 (1)Managerial career1966–1967 Rot-Weiss Essen *Club domestic league appearances and goals Heinz Wewers (27 July 1927 – 29 August 2008) was a German footballer.[1] Clu...