Photoconductivity and dark conductivity decrease rapidly at first before stabilizing at a lower value.
Interruptions in the illumination has no effect on the subsequent rate of change. Once the sample is illuminated again, the photoconductivity will drop as though there was no interruption.
Suggested explanations
The exact nature and cause of the Staebler–Wronski effect is still not well known. Nanocrystalline silicon suffers less from the Staebler–Wronski effect than amorphous silicon, suggesting that the disorder in the amorphous silicon Si network plays a major role. Other properties that could play a role are hydrogen concentration and its complex bonding mechanism, as well as the concentration of impurities.
Historically, the most favored model has been the hydrogen bond switching model.[2] It proposes that an electron-hole pair formed by the incident light may recombine near a weak Si–Si bond, releasing energy sufficient to break the bond. A neighbouring H atom then forms a new bond with one of the Si atoms, leaving a dangling bond. These dangling bonds can trap electron-hole pairs, thus reducing the current that can pass through. However, new experimental evidence is casting doubt on this model. More recently, the H collision model proposed that two spatially separated recombination events cause emission of mobile hydrogen from Si–H bonds to form two dangling bonds, with a metastable paired H state binding the hydrogen atoms at a distant site.[3]
Effects
The efficiency of an amorphous silicon solar cell typically drops during the first six months of operation. This drop may be in the range from 10% up to 30% depending on the material quality and device design. Most of this loss comes in the fill factor of the cell. After this initial drop, the effect reaches an equilibrium and causes little further degradation. The equilibrium level shifts with operating temperature so that performance of modules tend to recover some in the summer months and drop again in the winter months.[4] Most commercially available a-Si modules have SWE degradation in the 10–15% range and suppliers typically specify efficiency based on performance after the SWE degradation has stabilized. In a typical amorphous silicon solar cell the efficiency is reduced by up to 30% in the first 6 months as a result of the Staebler–Wronski effect, and the fill factor falls from over 0.7 to about 0.6. This light induced degradation is the major disadvantage of amorphous silicon as a photovoltaic material.[5]
Stacking one or more thinner layers of amorphous silicon together with other materials to form a multijunction solar cell.[6] The higher electric field which applies in the thinner layers appears to reduce the SWE.
^Branz, Howard M. (15 February 1999). "Hydrogen collision model: Quantitative description of metastability in amorphous silicon". Physical Review B. 59 (8). American Physical Society (APS): 5498–5512. Bibcode:1999PhRvB..59.5498B. doi:10.1103/physrevb.59.5498. ISSN0163-1829.
^Uchida, Y and Sakai, H. Light Induced Effects in a-Si:H Films and Solar Cells, Mat. Res. Soc. Symp. Proc., Vol. 70,1986
^Nelson, Jenny (2003). The Physics of Solar Cells. Imperial College Press.