"Hubbing" involves "the arrangement of a transportation network as a hub-and-spoke model".[2]
Benefits
The hub-and-spoke model, as compared to the point-to-point model, requires fewer routes. For a network of n nodes, only n − 1 routes are necessary to connect all nodes so the upper bound is n − 1, and the complexity is O(n). That compares favourably to the routes, or O(n2), which would be required to connect each node to every other node in a point-to-point network. For example, in a system with 6 destinations, the spoke–hub system requires only 5 routes to connect all destinations, and a true point-to-point system would require 15 routes. However distance traveled per route will necessarily be more than with a point-to-point system (except where the route happens to have no interchange). Therefore, efficiency may be reduced. Conversely, for the same number of aircraft, having fewer routes to fly means each route can be flown more frequently and with higher capacity because the demand for passengers can be resourced from more than just one city (assuming the passengers are willing to change, which will of itself incur its own costs).
Complicated operations, such as package sorting and accounting, can be carried out at the hub rather than at every node, and this leads to economies of scale. As a result of this, spokes are simpler to operate, and so new routes can easily be created.
Drawbacks
In addition, the hub constitutes a bottleneck or single point of failure in the network. The total cargo capacity of the network is limited by the hub's capacity. Delays at the hub (such as from bad weather conditions) can result in delays throughout the network. Cargo must pass through the hub before reaching its destination and so require longer journeys than direct point-to-point trips. That may be desirable for freight, which can benefit from sorting and consolidating operations at the hub, but it is problematic for time-critical cargo, as well as for passengers. The necessity of baggage transfers at the hub also increases the risk of missing luggage, as compared to the point-to-point model.
In 1955, Delta Air Lines pioneered the hub-and-spoke system at its hub in Atlanta, Georgia,[3] in an effort to compete with Eastern Air Lines. In the mid-1970s FedEx adopted the hub-and-spoke model for overnight package delivery. After the airline industry was deregulated in 1978, several other airlines adopted Delta's hub-and-spoke paradigm.
Airlines have extended the hub-and-spoke model in various ways. One method is to create additional hubs on a regional basis and to create major routes between them. That reduces the need to travel long distances between nodes near one another. Another method is to use focus cities to implement point-to-point service for high-traffic routes and to bypass the hub entirely.
Transportation
The spoke–hub model is applicable to other forms of transportation as well:
Sea transport in which feeder ships transport shipping containers from different ports to a central container terminal to be loaded onto larger vessels.
Freight rail transport in which cargo is hauled to a central exchange terminal. At the terminal, shipping containers are loaded from one freight car to another, and classification yards (marshalling yards) are used to sort freight cars into trains and divide them according to varying destinations. Intermodal freight is often loaded from one mode to another at central hubs.
Public transit uses various transport hubs to allow passengers to transfer between different lines or transportation modes. Often those hubs are intermodal linking buses, trams, local trains, subways and so on.
For passenger road transport, the spoke–hub model does not apply because drivers generally take the shortest or fastest route between two points. However, the road network as a whole likewise contains higher order roads like limited access highways and more local roads with most trips starting and ending at the latter but spending most of the distance on the former.
Industrial distribution
The hub-and-spoke model has also been used in economic geography theory to classify a particular type of industrial district. Economic geographer Ann Markusen theorized about industrial districts, with a number of key industrial firms and facilities acting as a hub, with associated businesses and suppliers benefiting from their presence and arranged around them like the spokes of a wheel. The chief characteristic of such hub-and-spoke industrial districts is the importance of one or more large companies, usually in one industrial sector, surrounded by smaller, associated businesses. Examples of cities with such districts include Seattle (where Boeing was founded), Silicon Valley (a high tech hub), and Toyota City, with Toyota.
In April 2014, all ten ASEAN defense chiefs and United States Secretary of DefenseChuck Hagel attended the US–ASEAN Defense Forum in Hawaii. The meeting was the first time the US hosted the forum and was part of a US attempt to get the countries to strengthen military ties between themselves.[6]
Badcock, B. A., 2002, Making Sense of Cities: A Geographical Survey, London: Arnold, pp. 63–94.
Lawrence, H., 2004, "Aviation and the Role of Government", London: Kendall Hunt, pp. 227–230.
Markusen, A (1996). "Sticky Places in Slippery Space: A Typology of Industrial Districts". Economic Geography. 72 (3): 293–313. doi:10.2307/144402. JSTOR144402.