Spinning top

An assortment of spinning tops

A spinning top, or simply a top, is a toy with a squat body and a sharp point at the bottom, designed to be spun on its vertical axis, balancing on the tip due to the gyroscopic effect.

Once set in motion, a top will usually wobble for a few seconds, spin upright for a while, then start to wobble again with increasing amplitude as it loses energy, and finally tip over and roll on its side.

Tops exist in many variations and materials, chiefly wood, metal, and plastic, often with a metal tip. They may be set in motion by twirling a handle with the fingers, by pulling a rope coiled around the body, or through a built-in auger (spiral plunger).

Such toys have been used since antiquity in solitary or competitive games, where each player tries to keep one's top spinning for as long as possible or achieve some other goal. Some tops have faceted bodies with symbols or inscriptions, and are used like dice to inject randomness into games or for divination and ritual purposes.

The ubiquity of spinning tops lends to the fact that the toy is used to name many living things such as Cyclosa turbinata, whose name comes from the Latin roots for spinning top.

History

Ancient Roman wooden spinning top, from Tebtynis (Egypt), dating from the 1st–3rd century CE

Origins

Spinning tops emerged independently in various cultures worldwide and are considered among the oldest known toys discovered by archaeologists. They have been unearthed on every continent except Antarctica. For instance, tops dating back to around 1250 BCE were found in China, while a carved wooden top from approximately 2000 BCE was discovered in Tutankhamun's tomb.[1][2] Tops were used as toys in ancient Rome.[3]

Besides toys, tops have also historically been used for gambling and prophecy. Some role-playing games use tops to augment dice in generating randomized results; it is in this case referred to as a spinner.

Gould mentions maple seeds, celts (leading to rattlebacks), the fire-drill, the spindle whorl, and the potter's wheel as possible predecessors to the top, which he assumes was invented or discovered multiple times in multiple places.[2]

Color demonstrations with tops

A top may be used to demonstrate visual properties, such as by James David Forbes and James Clerk Maxwell in Maxwell's disc (see color triangle). By rapidly spinning the top, Forbes created the illusion of a single color that was a mixture of the primaries:[4]

[The] experiments of Professor J. D. Forbes, which I witnessed in 1849… [established] that blue and yellow do not make green, but a pinkish tint, when neither prevails in the combination…[and the] result of mixing yellow and blue was, I believe, not previously known.

— James Clerk Maxwell, Experiments on colour, as perceived by the eye, with remarks on colour-blindness (1855), Transactions of the Royal Society of Edinburgh
Maxwell's color top (1895) and one from Popular Science Monthly (1877)

Maxwell took this a step further by using a circular scale around the rim with which to measure the ratios of the primaries, choosing vermilion, emerald, and ultramarine.[5]

Spinning methods

Finger twirling

Smaller tops have a short stem, and are set in motion by twirling it using the fingers. A thumbtack may also be made to spin on its tip in the same way.

Strings and whips

Extract from Children's Games (1560)

A typical fist-sized model, traditionally made of wood with a blunt iron tip, is meant to be set in motion by briskly pulling a string or rope tightly coiled around the body. The rope is best wound starting near the tip and progressing up along the widening body, so that the tension of the string will remain roughly constant while the top's angular speed increases.

These tops may be thrown forward while firmly grasping the end of the string and pulling it back. The forward momentum of the top contributes to the string's tension and thus to the final spin rate.

In some throwing styles, the top is thrown upside-down, but the first loop of the rope is wound around a stubby "head". Then, the sudden yank on the head as the string finishes unwinding causes the spinning top to flip over and land on its tip.

Alternatively, tops of this class may be started by hand but then accelerated and kept in motion by striking them repeatedly with a small whip.

Augers

Some larger models are set in motion by means of a built-in metal auger (spiral plunger). In these models, the actual top may be enclosed in a hollow metal shell, with the same axis but decoupled from it; so that the toy may appear to be stationary but "magically" balanced on its tip.

Magnetic fields

Some modern tops are kept perpetually in motion by spinning magnetic fields from a special ground plate.

Notable types

A cheap plastic version of the perinola
Carved wooden rattleback

Gould classifies tops into six main types: twirler, supported top, peg-top, whip-top, buzzer, and yo-yo.[6]

Modern functional art tops

Modern tops have several sophisticated improvements, such as ball bearings of ruby or a hard ceramic like tungsten carbide, that reduces the friction with the ground surface. Functional art tops have become collectibles built using varied techniques in metal-working, glass-working, and wood-working.

Physics

A precessing gyroscope

The motion of a top is described by equations of rigid body dynamics, specifically the theory of rotating rigid bodies.

Because of the small contact area between the tip and the underlying surface, and the large rotational inertia of its body, a top that is started on a hard surface will usually keep spinning for tens of seconds or more, even without additional energy input.

Typically the top will at first wobble until friction and torque between the tip and the underlying surface force it to spin with the axis steady and upright. Contrary to what is sometimes assumed, longstanding scientific studies (and easy experimentations reproducible by anyone) show that reducing the friction increases the time needed to reach this stable state (unless the top is so unbalanced that it falls over before reaching it).[8] After spinning upright (in the so-called "sleep" position) for an extended period, the angular momentum will gradually lessen (mainly due to friction), leading to ever increasing precession, finally causing the top to topple and roll some distance on its side. In the "sleep" period, and only in it, provided it is ever reached, less friction means longer "sleep" time (whence the common error that less friction implies longer global spinning time).

The total spinning time of a top is generally increased by increasing its moment of inertia and lowering its center of gravity.[8] These variables however are constrained by the need to prevent the body from touching the ground.

Asymmetric tops of virtually any shape can also be created and designed to balance.[9]

An exhaustive description of the mathematics and physics of the top can be found in the four volume monograph of Felix Klein et al.[10]

Competitions

There are many official competitions for top spinning as a sport, such as the U. S. National Championships and the World Championships. During the COVID-19 pandemic contests would be often held online, with contestants submitting videos.[11]

The Jean Shepherd story "Scut Farkas and the Murderous Mariah" revolves around top-spinning in the fictional Depression-era American city of Hohman, Indiana. The bully and the named top in the title are challenged by Shepherd's ongoing protagonist Ralph and a so-called "gypsy top" of similar design to Mariah named Wolf.[12]

The Top is a short story by bohemian writer Franz Kafka.[13]

Rock band The Cure released The Top album in 1984, named, and at least partially inspired, by the toy of the same name. The album includes the title track in which the sound of a spinning top can be heard at the beginning of the song.

The top is a focal element and metaphysical symbol in the movie Inception (2010), directed by Christopher Nolan and starring Leonardo DiCaprio. In the final shot, the camera moves over the spinning top just before it appears to be wobbling.[14]

In 2022, an Armenian-styled spinning top, with the song "Spin the Magic", was chosen as the theme art and the main motif for the 20th edition of Junior Eurovision Song Contest, which will be held in Yerevan, Armenia.[15]

See also

References

  1. ^ Cromwell, Sara (2022-06-24). "Summer Fun: Make a Spinning Top". Timothy S. Y. Lam Museum of Anthropology. Retrieved 2024-05-01.
  2. ^ a b Gould, D. W. (1973). The Top. NY: Clarkson Potter. pp. 20–24. ISBN 0-517-50416-2.
  3. ^ Tames, Richard; Williams, Brian (2003). Ancient Roman Children. Capstone Classroom. p. 24. ISBN 978-1-4034-0518-0.
  4. ^ Harman, Peter Michael (1998). The Natural Philosophy of James Clerk Maxwell. Cambridge University Press. ISBN 0-521-00585-X.
  5. ^ Maxwell, James Clerk (2003). The Scientific Papers of James Clerk Maxwell. Dover Publications. ISBN 0-486-49560-4.
  6. ^ Gould, D. W. (1973). The Top. NY: Clarkson Potter. p. 32. ISBN 0-517-50416-2.
  7. ^ National Recreation Association (1965). Recreation. p. 92. Archived from the original on 2013-11-13.
  8. ^ a b Crabtree, H. (1909). An Elementary Treatment of the Theory of Spinning Tops and Gyroscopic Motion. London: Longman, Green and C. ISBN 9781418179892.
  9. ^ Bächer, Moritz; Whiting, Emily; Bickel, Bernd; Sorkine-Hornung, Olga (August 10–14, 2014). "Spin-It: Optimizing Moment of Inertia for Spinnable Objects" (PDF). ACM Conference on Computer Graphics & Interactive Techniques (SIGGRAPH) 2014. Archived from the original (PDF) on 10 August 2014. Retrieved 15 August 2014.
  10. ^ Klein, F.; Sommerfeld, A. (2014). The Theory of the Top. Birkhäuser Basel. ISBN 9780817648268.{{cite book}}: CS1 maint: date and year (link)
  11. ^ "ITSA – International Top Spinners Association". Retrieved 23 April 2023.
  12. ^ Shepherd, Jean (1976). "Scut Farkas and the Murderous Mariah" in Wanda Hickey's Night of Golden Memories and Other Disasters. New York: Doubleday Dolphin Books. ISBN 0-385-11632-2
  13. ^ Kafka, Franz. The Complete Stories. New York City: Schocken Books, 1995.
  14. ^ "Inception Ending Explained: Why It Doesn't Matter If The Spinning Top Falls". Slash Film. 13 January 2022.
  15. ^ "'Spin The Magic' revealed as Junior Eurovision 2022 theme". junioreurovision.tv. 2022-09-26. Retrieved 2022-09-26.

Further reading

  • Greenler, Robert. "Chasing the Rainbow - Recurrences in the life of a scientist". Elton-Wolf Publishing, 2000. The top spinners from Kota Baru, Malaysia.
  • Perry J. "Spinning Tops". London Society for Promoting Christian Knowledge, 1870. Reprinted by Project Gutemberg ebook, 2010.
  • A forum discussing all things related to the art of Top Spinning: iTopSpin.com
  • "Top" . The New Student's Reference Work . 1914.

Read other articles:

Disambiguazione – Se stai cercando il calendario liturgico della Chiesa latina, vedi Calendario romano generale. Il calendario romano o calendario pre-giuliano denota l'insieme dei calendari che furono in uso nella Roma antica dalla sua fondazione fino all'avvento nel 46 a.C. del calendario giuliano. Secondo la tradizione, il calendario romano fu istituito nel 753 a.C. da Romolo, fondatore di Roma: subì diverse modifiche nel corso dei secoli, venendo infine sostituito nel 46 a.C. dal cale...

 

Primeira DivisaunMusim2019Tanggal27 April –29 September JuaraLalenok UnitedDegradasiAcadémica Atlético UltramarJumlah pertandingan56Jumlah gol203 (3,63 per pertandingan)Pencetak golterbanyakDaniel Adadi (12 gol)Kemenangan kandangterbesarAssalam 5–1 Atlético Ultramar (24 Agustus 2019)AS Académica 5–1 Atlético Ultramar (21 September 2019)Kemenangan tandangterbesarAS Académica 2–5 Lalenok United (3 Agustus 2019)Pertandingan terbanyak gol7 gol AS Académica 2–5 Lalenok United...

 

Untuk representasi secara visual, lihat Plot (grafik). Untuk struktur kombinatorial, lihat Graf_(matematika). Grafik dari fungsi f ( x ) = x 3 + 3 x 2 − 6 x − 8 4 . {\displaystyle f(x)={\frac {x^{3}+3x^{2}-6x-8}{4}}.} Dalam matematika, grafik dari sebuah fungsi f {\displaystyle f} adalah himpunan pasangan berurut ( x , y ) {\displaystyle (x,y)} dengan y = f ( x ) . {\displaystyle y=f(x).} Dalam kasus umum ketika x {\displaystyle x} dan f ( x ) {\displaystyle f(x)} berupa bilanga...

Untuk kegunaan lain, lihat Bilik Deputi. Bilik Deputi Câmara dos DeputadosLegislator Kongres Nasional ke-55JenisJenisDewan rendah dari Kongres Nasional Brasil Jangka waktuTidak adaSejarahDidirikan06 Mei 1826 (1826-05-06)Sesi baru dimulai02 Februari 2016 (2016-02-02)PimpinanPresidenEduardo Cunha, PMDB sejak 1 Februari 2015 Pemimpin PemerintahJosé Guimarães, PT Pemimpin MinoritasBruno Araújo, PSDB KomposisiAnggota513Partai & kursiPemerintah (296)[1] Blok PP...

 

Pour les articles homonymes, voir Relief. Carte topographique du monde. Le relief est la forte variation verticale d'une surface solide, soit positivement, en saillie, soit négativement, en creux. Ce mot est souvent employé pour caractériser la forme de la lithosphère terrestre. La géomorphologie distingue traditionnellement trois grands types de relief : la plaine ; le plateau ; la montagne. D'autres types de relief incluent la vallée, la colline, le fjord, la gorge et,...

 

Archives Archive 1 This is my Talk Page. Leave a message if you want. ArbCom Elections 2016: Voting now open! Hello, Millionsandbillions. Voting in the 2016 Arbitration Committee elections is open from Monday, 00:00, 21 November through Sunday, 23:59, 4 December to all unblocked users who have registered an account before Wednesday, 00:00, 28 October 2016 and have made at least 150 mainspace edits before Sunday, 00:00, 1 November 2016. The Arbitration Committee is the panel of editors respon...

Cet article est une ébauche concernant une localité tchèque. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Dyjákovice   Administration Pays Tchéquie Région Moravie-du-Sud District Znojmo Région historique Moravie Maire Josef Gajdošík Code postal 671 26 Démographie Population 861 hab. (2020) Densité 45 hab./km2 Géographie Coordonnées 48° 46′ 18″ nord, 16° 18...

 

Président de larépublique de Singapour(en) President of theRepublic of Singapore(ms) Presiden Republik Singapura(zh) 新加坡共和国總統(ta) சிங்கப்பூர் குடியரசுத் தலைவர் Emblème du président de Singapour. Étendard présidentiel de Singapour. Titulaire actuelTharman Shanmugaratnamdepuis le 14 septembre 2023(7 mois et 6 jours) Création 9 août 1965 Mandant Suffrage universel direct Durée du mandat 6 ans, renouvelable ...

 

1765–1838 series of revolutions in the Atlantic World Atlantic RevolutionsPart of the Age of RevolutionClockwise from top: The Storming of the Bastille (1789) Battle of Vertières (1803) Patriot troops during the Batavian Revolution (1795) John Trumbull's Declaration of Independence (1776) Date22 March 1765 – 4 December 1838(73 years, 8 months, 1 week and 5 days)LocationAtlantic WorldCaused by The Age of Enlightenment Resulted inMultiple revolutions and wars across the...

Norwegian footballer (born 1977) Erik Nevland Nevland in 2024Personal informationFull name Erik Nevland[1]Date of birth (1977-11-10) 10 November 1977 (age 46)[2]Place of birth Stavanger, NorwayHeight 1.78 m (5 ft 10 in)[2]Position(s) ForwardYouth career Viking Manchester UnitedSenior career*Years Team Apps (Gls)1995–1997 Viking 14 (5)1997–2000 Manchester United 1 (0)1998 → Viking (loan) 8 (3)1999 → IFK Göteborg (loan) 4 (0)2000–2004 Vikin...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Agriculture in Bahrain – news · newspapers · books · scholar · JSTOR (April 2009) This article ne...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: The Heroic Slave – news · newspapers · books · scholar · JSTOR (January 2013) This article may re...

هنودمعلومات عامةنسبة التسمية الهند التعداد الكليالتعداد قرابة 1.21 مليار[1][2]تعداد الهند عام 2011ق. 1.32 مليار[3]تقديرات عام 2017ق. 30.8 مليون[4]مناطق الوجود المميزةبلد الأصل الهند البلد الهند  الهند نيبال 4,000,000[5] الولايات المتحدة 3,982,398[6] الإمار...

 

Singa Betina dari MarundaSutradaraRamelanProduserA. Sutrisno SudomoDitulis olehRamelanPemeranConnie SutedjaWD MochtarHadisjam TahaxMansjur SjahMang TopoWolly SutinahLaila SariDina DianaRd MochtarMpok AniBang MadiMang UdiMang DimanMang HarryMang DudungPenata musikAdidharmaSinematograferWagiminPenyuntingAlex A. HassanTanggal rilis1971Durasi... menitNegaraIndonesia Singa Betina dari Marunda adalah film Indonesia tahun 1971 yang disutradarai oleh Ramelan dan dibintangi antara lain oleh Conn...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

Main article: Basketball at the 1972 Summer Olympics Inside view (in 2014) of the Rudi-Sedlmayer-Halle, where the final was played The 1972 Olympic men's basketball final was the last game of that year’s Olympic basketball tournament, and became one of the most controversial events in Olympic history. With the ending mired in controversy, the Soviet Union defeated Team USA by one point, marking the latter's first ever loss in the event. Both the U.S. and the Soviet Union won their first ei...

 

Zail Singhਜ਼ੈਲ ਸਿੰਘ Presiden India Ke-7Masa jabatan25 Juli 1982 – 25 Juli 1987Perdana MenteriIndira GandhiRajiv GandhiWakil PresidenMohammad HidayatullahRamaswamy VenkataramanPendahuluNeelam Sanjiva ReddyPenggantiRamaswamy VenkataramanMenteri Dalam NegeriMasa jabatan14 Januari 1980 – 22 Juni 1982Perdana MenteriIndira GandhiPendahuluYashwantrao ChavanPenggantiRamaswamy VenkataramanSekretaris Jenderal Gerakan Non-BlokMasa jabatan12 Maret 1983 – 6...

 

Koordinat: 28°31′28″N 77°11′08″E / 28.524382°N 77.185430°E / 28.524382; 77.185430 Qutab Minar dan monumen di sekelilingnya, DelhiSitus Warisan Dunia UNESCOKriteriaBudaya: ivNomor identifikasi233Pengukuhan1993 (ke-17) Kompleks Qutb adalah sekelompok monumen dan bangunan di desa Mehrauli Delhi, India, bagian yang paling terkenalnya adalah Qutub Minar. Kompleks ini pertama kali dibangun oleh Quthbuddin Aybak, penguasa pertama Dinasti Slave, di kota baruny...

Rappresentazione semplificata di una generica reazione di decomposizione di un composto AB in due sostanze (semplici o composte) A e B. La decomposizione chimica (o degradazione o reazione di analisi) è una reazione di scissione di una specie chimica (ad esempio una molecola) in più specie chimiche.[1] Definibile concettualmente come l'opposto della sintesi chimica, il processo di decomposizione si configura spesso come fattore di disturbo, soprattutto nell'ambito della chimica indu...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Charlotte TilburyTilbury talks about her cosmetics to Vogue in 2021Lahir10 Februari 1973 (umur 51)London, InggrisDikenal atasPeriasKarya terkenalPendiri Charlotte Tilbury BeautySuami/istriGeorge Waud (m. 2014)Situs webwww.charlottetilbury.com Log...