Spin-1/2

A single point in space can spin continuously without becoming tangled. Notice that after a 360° rotation, the spiral flips between clockwise and counterclockwise orientations. It returns to its original configuration after spinning a full 720°.

In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of 1/2.[1][2][3] The spin number describes how many symmetrical facets a particle has in one full rotation; a spin of 1/2 means that the particle must be rotated by two full turns (through 720°) before it has the same configuration as when it started.

Particles having net spin 1/2 include the proton, neutron, electron, neutrino, and quarks. The dynamics of spin-1/2 objects cannot be accurately described using classical physics; they are among the simplest systems which require quantum mechanics to describe them. As such, the study of the behavior of spin-1/2 systems forms a central part of quantum mechanics.

Stern–Gerlach experiment

The necessity of introducing half-integer spin goes back experimentally to the results of the Stern–Gerlach experiment. A beam of atoms is run through a strong heterogeneous magnetic field, which then splits into N parts depending on the intrinsic angular momentum of the atoms. It was found that for silver atoms, the beam was split in two—the ground state therefore could not be an integer, because even if the intrinsic angular momentum of the atoms were the smallest (non-zero) integer possible, 1, the beam would be split into 3 parts, corresponding to atoms with Lz = −1, +1, and 0, with 0 simply being the value known to come between −1 and +1 while also being a whole-integer itself, and thus a valid quantized spin number in this case. The existence of this hypothetical "extra step" between the two polarized quantum states would necessitate a third quantum state; a third beam, which is not observed in the experiment. The conclusion was that silver atoms had net intrinsic angular momentum of 1/2.[1]

General properties

Heuristic depiction of spin angular momentum cones for a spin-1/2 particle.

Spin-1/2 objects are all fermions (a fact explained by the spin–statistics theorem) and satisfy the Pauli exclusion principle. Spin-1/2 particles can have a permanent magnetic moment along the direction of their spin, and this magnetic moment gives rise to electromagnetic interactions that depend on the spin. One such effect that was important in the discovery of spin is the Zeeman effect, the splitting of a spectral line into several components in the presence of a static magnetic field.

Unlike in more complicated quantum mechanical systems, the spin of a spin-1/2 particle can be expressed as a linear combination of just two eigenstates, or eigenspinors. These are traditionally labeled spin up and spin down. Because of this, the quantum-mechanical spin operators can be represented as simple 2 × 2 matrices. These matrices are called the Pauli matrices.

Creation and annihilation operators can be constructed for spin-1/2 objects; these obey the same commutation relations as other angular momentum operators.

Connection to the uncertainty principle

One consequence of the generalized uncertainty principle is that the spin projection operators (which measure the spin along a given direction like x, y, or z) cannot be measured simultaneously. Physically, this means that the axis about which a particle is spinning is ill-defined. A measurement of the z-component of spin destroys any information about the x- and y-components that might previously have been obtained.

Mathematical description

A spin-1/2 particle is characterized by an angular momentum quantum number for spin s of 1/2. In solutions of the Schrödinger equation, angular momentum is quantized according to this number, so that total spin angular momentum

However, the observed fine structure when the electron is observed along one axis, such as the z-axis, is quantized in terms of a magnetic quantum number, which can be viewed as a quantization of a vector component of this total angular momentum, which can have only the values of ±1/2ħ.

Note that these values for angular momentum are functions only of the reduced Planck constant (the angular momentum of any photon), with no dependence on mass or charge.[4]

Complex phase

Mathematically, quantum mechanical spin is not described by a vector as in classical angular momentum. It is described by a complex-valued vector with two components called a spinor. There are subtle differences between the behavior of spinors and vectors under coordinate rotations, stemming from the behavior of a vector space over a complex field.

When a spinor is rotated by 360° (one full turn), it transforms to its negative, and then after a further rotation of 360° it transforms back to its initial value again. This is because in quantum theory the state of a particle or system is represented by a complex probability amplitude (wavefunction) ψ, and when the system is measured, the probability of finding the system in the state ψ equals |ψ|2 = ψ*ψ, the absolute square (square of the absolute value) of the amplitude. In mathematical terms, the quantum Hilbert space carries a projective representation of the rotation group SO(3).

Suppose a detector that can be rotated measures a particle in which the probabilities of detecting some state are affected by the rotation of the detector. When the system is rotated through 360°, the observed output and physics are the same as initially but the amplitudes are changed for a spin-1/2 particle by a factor of −1 or a phase shift of half of 360°. When the probabilities are calculated, the −1 is squared, (−1)2 = 1, so the predicted physics is the same as in the starting position. Also, in a spin-1/2 particle there are only two spin states and the amplitudes for both change by the same −1 factor, so the interference effects are identical, unlike the case for higher spins. The complex probability amplitudes are something of a theoretical construct which cannot be directly observed.

If the probability amplitudes rotated by the same amount as the detector, then they would have changed by a factor of −1 when the equipment was rotated by 180° which when squared would predict the same output as at the start, but experiments show this to be wrong. If the detector is rotated by 180°, the result with spin-1/2 particles can be different from what it would be if not rotated, hence the factor of a half is necessary to make the predictions of the theory match the experiments.

In terms of more direct evidence, physical effects of the difference between the rotation of a spin-1/2 particle by 360° as compared with 720° have been experimentally observed in classic experiments[5] in neutron interferometry. In particular, if a beam of spin-oriented spin-1/2 particles is split, and just one of the beams is rotated about the axis of its direction of motion and then recombined with the original beam, different interference effects are observed depending on the angle of rotation. In the case of rotation by 360°, cancellation effects are observed, whereas in the case of rotation by 720°, the beams are mutually reinforcing.[5]

Non-relativistic quantum mechanics

The quantum state of a spin-1/2 particle can be described by a two-component complex-valued vector called a spinor. Observable states of the particle are then found by the spin operators Sx, Sy, and Sz, and the total spin operator S.

Observables

When spinors are used to describe the quantum states, the three spin operators (Sx, Sy, Sz,) can be described by 2 × 2 matrices called the Pauli matrices whose eigenvalues are ±ħ/2.

For example, the spin projection operator Sz affects a measurement of the spin in the z direction.

The two eigenvalues of Sz, ±ħ/2, then correspond to the following eigenspinors:

These vectors form a complete basis for the Hilbert space describing the spin-1/2 particle. Thus, linear combinations of these two states can represent all possible states of the spin, including in the x- and y-directions.

The ladder operators are:

Since S± =Sx ± i Sy,[6] it follows that Sx = 1/2(S+ + S) and Sy =1/2i(S+S). Thus:

Their normalized eigenspinors can be found in the usual way. For Sx, they are:

For Sy, they are:

Relativistic quantum mechanics

While non relativistic quantum mechanics defines spin 1/2 with 2 dimensions in Hilbert space with dynamics that are described in 3-dimensional space and time, relativistic quantum mechanics defines the spin with 4 dimensions in Hilbert space and dynamics described by 4-dimensional space-time.[citation needed]

Observables

As a consequence of the four-dimensional nature of space-time in relativity, relativistic quantum mechanics uses 4×4 matrices to describe spin operators and observables.[citation needed]

History

When physicist Paul Dirac tried to modify the Schrödinger equation so that it was consistent with Einstein's theory of relativity, he found it was only possible by including matrices in the resulting Dirac equation, implying the wave must have multiple components leading to spin.[7]

The 4π spinor rotation was experimentally verified using neutron interferometry in 1974, by Helmut Rauch and collaborators,[8] after being suggested by Yakir Aharonov and Leonard Susskind in 1967.[9]

See also

Notes

  1. ^ a b Resnick, R.; Eisberg, R. (1985). Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (2nd ed.). John Wiley & Sons. ISBN 978-0-471-87373-0.
  2. ^ Atkins, P. W. (1974). Quanta: A Handbook of Concepts. Oxford University Press. ISBN 0-19-855493-1.
  3. ^ Peleg, Y.; Pnini, R.; Zaarur, E.; Hecht, E. (2010). Quantum Mechanics (2nd ed.). McGraw Hill. ISBN 978-0-071-62358-2.
  4. ^ Nave, C. R. (2005). "Electron Spin". Georgia State University.
  5. ^ a b Rauch, Helmut; Werner, Samuel A. (2015). Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement. USA: Oxford University Press.
  6. ^ Griffiths, David J. (2018). Introduction to quantum mechanics. Darrell F. Schroeter (3 ed.). Cambridge, United Kingdom: Cambridge University Press. ISBN 978-1-107-18963-8. OCLC 1030447903.
  7. ^ McMahon, D. (2008). Quantum Field Theory. USA: McGraw Hill. ISBN 978-0-07-154382-8.
  8. ^ Rauch, H.; Zeilinger, A.; Badurek, G.; Wilfing, A.; Bauspiess, W.; Bonse, U. (October 1975). "Verification of coherent spinor rotation of fermions". Physics Letters A. 54 (6): 425–427. doi:10.1016/0375-9601(75)90798-7. ISSN 0375-9601.
  9. ^ Aharonov, Yakir; Susskind, Leonard (1967-06-25). "Observability of the Sign Change of Spinors under $2\ensuremath{\pi}$ Rotations". Physical Review. 158 (5): 1237–1238. doi:10.1103/PhysRev.158.1237.

Further reading

  • Media related to Spin-½ at Wikimedia Commons

Read other articles:

HelplessNama lainHangul화차 Hanja火車 Alih Aksara yang DisempurnakanHwachaMcCune–ReischauerHwach‘a SutradaraByun Young-jooProduserShin Hye-eun Oh Ki-minDitulis olehByun Young-jooBerdasarkanAll She Was Wortholeh Miyabe MiyukiPemeranKim Min-hee Lee Sun-kyun Jo Sung-haPenata musikKim Hong-jibSinematograferKim Dong-youngPenyuntingPark Gok-jiPerusahaanproduksiFilament PicturesDistributorCJ E&MTanggal rilis 8 Maret 2012 (2012-03-08) Durasi117 menitNegaraKorea SelatanBah...

 

 

Hjalmar Bergman di Wadköping Örebro ialah sebuah kota di Swedia yang berpenduduk 95.354 jiwa, terletak di Daerah Örebro, bekas provinsi Närke, Svealand. Kota ini terkenal akan Örebro slott, yang terletak di sebuah pulau di Svartaan, yang mengalir melalui kota ini. Wikimedia Commons memiliki media mengenai Örebro. Artikel bertopik geografi atau tempat Swedia ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

 

 

Jaranan dangdutSumber aliranMelayu, Indonesia, Gamelan, JarananSumber kebudayaanMelayu dan JawaAlat musik yang biasa digunakanTabla (dapat diganti dengan ketipung), kendang, drum set, suling, tamborin, gitar (akustik atau elektrik), bass, terompet, kenong, dll. Kecapi, seruling dan sitar pada relief Borobudur, foto c. 1890 Musik dari Indonesia Garis waktuContoh Jenis KlasikDaerahTradisionalJazzHip hopPopRokR&BKeroncongDangdut Bentuk khusus Jawa KidungTembangLanggamGamelanAngklungCal...

American ice hockey player and coach Ice hockey player Peter Laviolette Laviolette in 2014Born (1964-12-07) December 7, 1964 (age 59)Franklin, Massachusetts, U.S.Height 6 ft 2 in (188 cm)Weight 200 lb (91 kg; 14 st 4 lb)Position DefenseShot LeftPlayed for New York RangersCurrent NHL coach New York RangersCoached for New York IslandersCarolina HurricanesPhiladelphia FlyersNashville PredatorsWashington CapitalsNational team  United StatesNHL Draft Un...

 

 

For other uses, see Jessica (disambiguation). JessicaA painting depicting Shylock and Jessica by Maurycy Gottlieb. The first use of the name Jessica is found in William Shakespeare's The Merchant of Venice. Act 2, Scene 3: (2.3.1) Enter Iessica and the Clowne.Pronunciation/ˈdʒɛsɪkə/GenderFemaleOriginWord/nameEarly Modern English, derived from Hebrew, ultimately from the triconsonantal root ס־כ־ה, 'to see, behold, look for'Meaninghe will see/behold/look forRegion of originMes...

 

 

كلمة ثينج (بالإنجليزية: thing)‏ والتي تعني بالعربية شيء.[1][2][3] (ثينج باللغة الإسكندنافية القديمة والإنجليزية القديمة، والايسلندية هي (þing), وفي اللغات الإسكندنافية الأكثر حداثة ينطقونها (ting). هو اسم جمعية أو مجموعة كانت تنظم شؤون القبائل الجرمانيون, وقامت أيضا باد...

У этого термина существуют и другие значения, см. Верба (значения). БМ-21У «Верба» Классификация реактивная система залпового огня Шасси КрАЗ-6322–010[1][2] История Страна-разработчик  Украина Годы производства с декабря 2015 Количество выпущенных 113[3] шт. Разме...

 

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (août 2019). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? Com...

 

 

Census-designated place in California, United StatesRunning SpringsCensus-designated placeLocation in San Bernardino County and the state of CaliforniaRunning SpringsLocation in the United StatesCoordinates: 34°12′28″N 117°6′30″W / 34.20778°N 117.10833°W / 34.20778; -117.10833Country United StatesState CaliforniaCountySan BernardinoArea[1] • Total4.213 sq mi (10.912 km2) • Land4.204 sq mi (...

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) لامار توماس معلومات شخصية الميلاد 12 فبراير 1970 (54 سنة)  أوكالا  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة ميامي  المهنة لاعب كرة قد�...

 

 

Painting by Gustav Klimt Water Serpents IIArtistGustav KlimtYear1904–1907MediumOil on canvasDimensions80 cm × 145 cm (31 in × 57 in)LocationPrivate collection, Asia Water Serpents II, also referred to as Wasserschlangen II, is an oil painting made by Gustav Klimt in 1907. It is the follow-up painting to the earlier painting Water Serpents I. Like the first painting, Water Serpents II deals with the sensuality of women's bodies and same-sex relatio...

هاكان ميلد معلومات شخصية الميلاد 14 يونيو 1971 (53 سنة)  ترولهتان  الطول 1.82 م (5 قدم 11 1⁄2 بوصة) مركز اللعب وسط الجنسية السويد  المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1989–1993 غوتبورغ 92 (9) 1993–1995 سيرفيت 21 (1) 1995–1996 غوتبورغ 23 (5) 1996–1998 ريال سوسيداد 50 (1) 1998–2001 غوتبورغ 66 ...

 

 

Mirah darahUmumKategoriKalsedonRumus(unit berulang)Silika (silikon dioksida, SiO2)Sistem kristalTrigonalIdentifikasiMassa molekul60 g/molWarnaMerah kecoklatanBelahanTidak adaFrakturTidak rata, serpihan, konkoidKekerasan dalam skala Mohs6–7Kilaukaca, kusam, berminyak, halusGoresPutihDiafaneitasTembus cahayaBerat jenis2.59–2.61Referensi[1] Mirah darah adalah batuan mineral akik merah kecokelatan yang biasanya digunakan sebagai batu permata. Batu ini adalah ragam dari mineral silika ...

 

 

Flat transitional edge between two faces of a manufactured object For the concept in mathematics, see chamfer (geometry). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Chamfer – news · newspapers · books · scholar · JSTOR (April 2019) (Learn how and when to remove this message) A chamfer with a lark's tong...

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2018)   لمعانٍ أخرى، طالع مقاطعة مورغان (توضيح). مقاطعة مورغان     الإحداثيات ...

 

 

سوق المدينةمعلومات عامةالتقسيم الإداري حلب القديمة البلد  سوريا الإحداثيات 36°12′N 37°09′E / 36.2°N 37.15°E / 36.2; 37.15 تعديل - تعديل مصدري - تعديل ويكي بيانات الشارع الرئيسي في سوق المدينة 36°12′N 37°09′E / 36.200°N 37.150°E / 36.200; 37.150 سوق المدينة أحد أسواق حلب القديمة.&...

 

 

YG Entertainment Inc.Logo resmi sejak 2013.[1]Nama asliYG 엔터테인먼트Nama latinYG enteoteinmeonteuJenisPublicKode emitenKRX: 122870IndustriEntertainmentRetailGenreVariousDidirikan24 Februari 1996; 28 tahun lalu (1996-02-24)PendiriYang Hyun-sukKantor pusat397-5 Hapjeong-dong, Mapo-gu, Seoul, South KoreaWilayah operasiWorldwideTokoh kunciYang Min-sukHwang Bo-kyung (co-CEOs)[2]Pendapatan{ US$ 228.81 juta (2021)Laba operasi US$ 32.02 juta (2021)Laba bersihUS$ 6.53 juta...

Russian-Filipino pair skater In this name that follows Eastern Slavic naming customs, the patronymic is Sergeyevich and the family name is Korovin. Alexander KorovinKorovin at the 2019 UniversiadeFull nameAlexander Sergeyevich KorovinNative nameАлександр Сергеевич КоровинOther namesAleksandr KorovinBorn (1994-02-15) 15 February 1994 (age 30)Pervouralsk, RussiaHeight1.81 m (5 ft 11+1⁄2 in)Figure skating careerCountry Philippines ...

 

 

German lithographer and painter Self-portrait (1810) Portrait of Bertel Thorvaldsen (c.1810) Rudolph Friedrich Carl Suhrlandt (19 December 1781, in Ludwigslust – 2 February 1862, in Schwerin) was a German portrait painter and lithographer. Biography His father, Johann Heinrich Suhrlandt, was a court painter for Grand Duke Fredrick Francis I of Mecklenburg. His first art lessons came from his father. In 1799, he became a student at the Dresden Academy of Fine Arts, with a royal scholarship a...