In physics and mathematics, the spacetime triangle diagram (STTD) technique,
also known as the Smirnov method of incomplete separation of variables, is the direct space-time domain method for electromagnetic and scalar wave motion.
Basic stages
(Electromagnetics) The system of Maxwell's equations is reduced to a second-order PDE for the field components, or potentials, or their derivatives.
The spatial variables are separated using convenient expansions into series and/or integral transforms—except one that remains bounded with the time variable, resulting in a PDE of hyperbolic type.
The resulting hyperbolic PDE and the simultaneously transformed initial conditions compose a problem, which is solved using the Riemann–Volterra integral formula. This yields the generic solution expressed via a double integral over a triangle domain in the bounded-coordinate—time space. Then this domain is replaced by a more complicated but smaller one, in which the integrant is essentially nonzero, found using a strictly formalized procedure involving specific spacetime triangle diagrams (see, e.g., Refs.[1][2][3]).
In the majority of cases the obtained solutions, being multiplied by known functions of the previously separated variables, result in the expressions of a clear physical meaning (nonsteady-state modes). In many cases, however, more explicit solutions can be found summing up the expansions or doing the inverse integral transform.
STTD versus Green's function technique
The STTD technique belongs to the second among the two principal ansätze for theoretical treatment of waves — the frequency domain and the direct spacetime domain.
The most well-established method for the inhomogeneous (source-related) descriptive equations of wave motion is one based on the Green's function technique.[4] For the circumstances described in Section 6.4 and Chapter 14 of Jackson's Classical Electrodynamics,[4] it can be reduced to calculation of the wave field via retarded potentials (in particular, the Liénard–Wiechert potentials).
Despite certain similarity between Green's and Riemann–Volterra methods (in some literature the Riemann function is called the Riemann–Green function [5]), their application to the problems of wave motion results in distinct situations:
The definitions of both Green's function and corresponding Green's solution are not unique as they leave room for addition of arbitrary solution of the homogeneous equation; in some circumstances the particular choice of Green's function and the final solution are defined by boundary condition(s) or plausibility and physical admissibility of the constructed wavefunctions.[6] The Riemann function is a solution of the homogeneous equation that additionally must take a certain value at the characteristics and thus is defined in a unique way.
In contrast to Green's method that provides a particular solution of the inhomogeneous equation, the Riemann–Volterra method is related to the corresponding problem, comprising the PDE and initial conditions,
[7][8]
and it was the Riemann–Volterra representation that Smirnov used in his Course of Higher Mathematics to prove the uniqueness of the solution to the above problem (see,[8] item 143).
In the general case, Green's formula implies integration over the entire domain of variation of coordinates and time, while integration in the Riemann–Volterra solution is carried out within a limited triangle region, assuring the boundness of the solution support.
Causality of the (unique) Riemann–Volterra solution is provided automatically, without need to recur to additional considerations, such as the retarded nature of the argument, wave propagation in certain direction, specific choice of the integration path, etc. (Usually the descriptive equations, such as the classical scalar wave equation, possess the T-symmetry. It is the time-asymmetric initial conditions that define the arrow of time through the limitation of the integration domain in the Riemann formula to , see more in[2] and a particular example given below.)
Green's function can be readily derived from the Liénard–Wiechert potential of a moving point source, but concrete calculation of the wavefunction, inevitably involving the analysis of the retarded argument, may develop in a rather complicated task unless some special techniques, like the parametric method,[9]
are invoked. The Riemann-Volterra approach presents the same or even more serious difficulties, especially when one deals with the bounded-support sources: here the actual limits of integration must be defined from the system of inequalities involving the space-time variables and parameters of the source term. However, this definition can be strictly formalized using the spacetime triangle diagrams. Playing the same role as the Feynman diagrams in particle physics, STTDs provide a strict and illustrative procedure for definition of areas with the same analytic representation of the integration domain in the 2D space spanned by the non-separated spatial variable and time.
Drawbacks of the method
The method can only be applied to problems possessing known Riemann function.
In some cases the final integrals require special consideration in the domains of rapid oscillation of the Riemann function.
Most important concretizations
General considerations
Several efficient methods for scalarizing electromagnetic problems in the orthogonal coordinates were discussed by Borisov in Ref.[10]
The most important conditions of their applicability are and
, where are the
metric (Lamé) coefficients (so that the squared length element is ). Remarkably, this condition is met for the majority of practically important coordinate systems, including the Cartesian, general-type cylindrical and spherical ones.
For the problems of wave motion is free space, the basic method of separating spatial variables is the application of integral transforms, while for the problems of wave generation and propagation in the guiding systems the variables are usually separated using expansions in terms of the basic functions (modes) meeting the required boundary conditions at the surface of the guiding system.
Here is the time variable expressed in units of length using some characteristic velocity (e.g., speed of light or sound),
is a constant originated from the separation of variables, and represents a part of the source
term in the initial wave equation that remains after application of the variable-separation procedures (a series coefficient or a result of
an integral transform).
The above problem possesses known Riemann function
where is the Bessel function of the first kind of order zero.
Passing to the canonical variables one gets the simplest STTD diagram reflecting straightforward application of the Riemann–Volterra method,[7][8] with the fundamental integration domain represented by spacetime triangle MPQ (in dark grey).
Rotation of the STTD 45° counter clockwise yields more common form of the STTD in
the conventional spacetime .
For the homogeneous initial conditions the (unique[8]) solution of the problem is given by the Riemann formula
Evolution of the wave process can be traced using a fixed observation point () successively increasing the triangle height () or, alternatively, taking "momentary picture" of the wavefunction by shifting the spacetime triangle along the axis ().
More useful and sophisticated STTDs correspond to pulsed sources whose support is limited in spacetime. Each limitation produce specific modifications in the STTD, resulting to smaller and more complicated integration domains in which the
integrand is essentially non-zero. Examples of most common modifications and their combined actions are illustrated below.
STTD for a source limited from left by plane , i.e. , which is the case, e.g., for a travelling source propagating along a semi-infinite radiator .
STTD for a source limited from right by plane , i.e.
STTD for a source limited from both sides, i.e. , which is the case, e.g., for a travelling source propagating along a radiator of finite length .
Combined action of limitations of different type, see Refs.[1][10][11][12][13] for details and more complicated examples
STTD for a semi-infinite travelling source pulse.
STTD for a finite travelling source pulse.
STTD for a finite travelling source pulse propagating along a semi-infinite radiator .
A sequence of generic STTDs for a "short", finite source pulse of duration propagating along a finite radiator with a constant velocity .[citation needed] In this case the source can be expressed in the form
In the spherical coordinate system — which in view of the General considerations must be represented in the sequence
, assuring — one can scalarize problems for the transverse electric (TE) or transverse magnetic (TM) waves using the Borgnis functions, Debye potentials or Hertz vectors. Subsequent separation of the angular variables via expansion of the initial wavefunction and the source
Equivalence of the STTD (Riemann) and Green's function solutions
The STTD technique represents an alternative to the classical Green's function method. Due to uniqueness of the solution to the initial value problem in question,[8] in the particular case of zero initial conditions the Riemann solution provided by the STTD technique must coincide with the convolution of the causal Green's function and the source term.
The two methods provide apparently different descriptions of the wavefunction: e.g., the Riemann function to the Klein–Gordon problem is a Bessel function (which must be integrated, together with the source term, over the restricted area represented by the fundamental triangle MPQ) while the retarded Green's function to the Klein–Gordon equation is a Fourier transform of the imaginary exponential term (to be integrated over the entire plane , see, for example, Sec. 3.1. of Ref.[14]
) reducible to
Extending integration with respect to to the complex domain, using the residue theorem
(with the poles chosen as to satisfy the causality conditions) one gets
the last Green's function representation reduces to the expression[16]
in which 1/2 is the scaling factor of the Riemann formula and the Riemann function, while the Heaviside step function reduces, for , the area of integration to the fundamental triangle MPQ, making the Green's function solution equal to that provided by the STTD technique.
References and notes
^ ab
A.B. Utkin,
Localized Waves Emanated by Pulsed Sources: The Riemann–Volterra Approach.
In: Hugo E. Hernández-Figueroa, Erasmo Recami, and Michel Zamboni-Rached (eds.)
Non-diffracting Waves.
Wiley-VCH: Berlin, ISBN978-3-527-41195-5,
pp. 287–306 (2013)
^Apparently this result was first published by Geyi (2006: 275), merely as a way to simplify the Green's solution and reduce the domain of integration.
Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Kabupaten Jeungpyeong di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan pe...
Reggina CalcioStagione 2006-2007Sport calcio Squadra Reggina Allenatore Walter Mazzarri Presidente Lillo Foti Serie A14º posto Coppa ItaliaOttavi di finale Maggiori presenzeCampionato: Bianchi (37)Totale: Bianchi (40) Miglior marcatoreCampionato: Bianchi (18)Totale: Bianchi (19) StadioStadio Oreste Granillo (27 543) Abbonati9 200[1] Maggior numero di spettatori20 835 vs Milan (27 maggio 2007)[1] Minor numero di spettatori8 500 vs Atalanta (18 febbraio 2007...
American poet Phyllis McGinleyBornMarch 21, 1905Ontario, OregonDiedFebruary 22, 1978(1978-02-22) (aged 72)New York City, NYAlma mater University of Southern California University of Utah (BA) Notable awardsPulitzer PrizeSpouse Charles L. Hayden (m. 1937)Children2 children, including Julie Hayden Phyllis McGinley (March 21, 1905 – February 22, 1978) was an American author of children's books and poetry. Her poetry was in the style of light verse, spec...
Protected area in Georgia, United States Cohutta WildernessIUCN category Ib (wilderness area)LocationFannin / Murray / Gilmer counties, Georgia / Polk County, Tennessee, USANearest cityCrandall, GeorgiaCoordinates34°52′32″N 84°37′32″W / 34.87556°N 84.62556°W / 34.87556; -84.62556Area36,977 acres (150 km2)Established1975Governing bodyU.S. Forest Service The Cohutta Wilderness was designated in 1975, expanded in 1986, and currently consists of ...
Branch of sociology For the book by Max Weber, see Sociology of Religion (book). For the academic journal, see Sociology of Religion (journal). Muslims praying in the streets of Istanbul Part of a series onSociology History Outline Index Key themes Society Globalization Human behavior Human environmental impact Identity Industrial revolutions 3 / 4 / 5 Social complexity Social construct Social environment Social equality Social equity Social power Social stratification Social structure Perspe...
American politician John Blaisdell CorlissCorliss c. 1922Member of the U.S. House of Representativesfrom Michigan's 1st districtIn officeMarch 4, 1895 – March 3, 1903Preceded byLevi T. GriffinSucceeded byAlfred LuckingDetroit City AttorneyIn office1882–1886 Personal detailsBornJune 7, 1851Richford, VermontDiedDecember 24, 1929(1929-12-24) (aged 78)Detroit, MichiganPolitical partyRepublicanSpouse(s)Elizabeth Danforth (m. 1877, d. 1886)Dorothy Montgomery (m. 1917)E...
العلاقات الزيمبابوية السورية زيمبابوي سوريا زيمبابوي سوريا تعديل مصدري - تعديل العلاقات الزيمبابوية السورية هي العلاقات الثنائية التي تجمع بين زيمبابوي وسوريا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا...
Interpellation de Salah Abdeslam Localisation Molenbeek-Saint-Jean, rue des Quatre-Vents, n°79 Coordonnées 50° 51′ 11″ nord, 4° 19′ 52″ est Date 18 mars 2016 à 16 h 55 (UTC+1) Blessés 2 terroristes Organisations État islamique Mouvance Terrorisme islamiste Géolocalisation sur la carte : Belgique modifier L'opération policière du 18 mars 2016 à Molenbeek-Saint-Jean a eu lieu dans la commune bruxelloise de Molenbeek-Saint-Je...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2023. Ata Syuhada GelarKiaiNama lainAbah AtaInformasi pribadiLahirSukadamai, Cikupa, TangerangAgamaIslamKebangsaanIndonesiaZamanModernDenominasiSunniDikenal sebagaiPimpinan Pondok Pesantren Al-KhoiratPekerjaanUlamaKedudukan seniorGuruKH Ahmad UnariKH Y...
Congolese politician (1929–2015) Albert Kalonji Ditunga (Albert I)Mulopwe / God-king / Emperor of the BalubaHead of State of South Kasai(first as President, later as King)In office9 August 1960 – 5 October 1962Preceded byEdmond Mukanya MulendaSucceeded byposition disestablished Personal detailsBornAlbert Kalonji(1929-06-06)6 June 1929Hemptinne (near Luluabourg), Belgian CongoDied20 April 2015(2015-04-20) (aged 85)Mbuji-Mayi, Democratic Republic of the CongoPolitical partyMou...
Le président Lyndon B. Johnson signe le Poverty Bill (connu aussi sous le nom d'Economic Opportunity Act) entouré par la presse et des supporteurs, le 20 août 1964. La « guerre contre la pauvreté » est proclamée par le président des États-Unis Lyndon Johnson lors de son discours sur l'état de l'Union du 8 janvier 1964. Johnson reprend alors à son compte l’objectif défini dix ans auparavant par Ida Merriam, une chercheuse qui travaillait depuis 1963 au Bureau des recher...
Settlement in Sal, Cape VerdeSanta MariaSettlementTypical street in Santa MariaSanta MariaCoordinates: 16°35′56″N 22°54′14″W / 16.599°N 22.904°W / 16.599; -22.904CountryCape VerdeIslandSalMunicipalitySalCivil parishNossa Senhora das DoresElevation12 m (39 ft)Population (2010)[1] • Total6,258ID41104 Santa Maria (Portuguese for Saint Mary) is a city[2] in the southern part of the island municipality of Sal, Cape Verd...
Indo-European language This article is about the medieval language. For the food manufacturing company, see Old Dutch Foods. For the restaurant in Rotterdam, see Old Dutch (restaurant). Old DutchOld Low FranconianNative toHolland, Austrasia, Zeeland and FlandersRegionThe Low CountriesEraGradually developed into Middle Dutch by mid-12th century[1][2]Language familyIndo-European GermanicWest GermanicWeser–Rhine GermanicOld DutchEarly formsProto-Indo-European Proto-Germani...
Voce principale: Avezzano Calcio. Avezzano CalcioStagione 1992-1993Una formazione dell'Avezzano nel campionato 1992-1993 Sport calcio Squadra Avezzano Allenatore Pino Petrelli Presidente Mauro Gentile Serie C2 1992-199314º StadioStadio dei Marsi 1991-1992 1993-1994 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardanti l'Avezzano Calcio nelle competizioni ufficiali della stagione 1992-1993. Indice 1 Organigramma societario 2 Rosa 2.1 Rosa 1992-1993 3...
Pour les articles homonymes, voir Sabre (homonymie). Sabres de Buffalo Données-clés Fondation 1970 Siège Buffalo (New York, États-Unis) Patinoire (aréna) KeyBank Center(19 070 places) Couleurs Bleu, jaune, blanc Ligue Ligue nationale de hockey Association Association de l'Est Division Division Atlantique Capitaines adjoints Zemgus GirgensonsRasmus Dahlin Entraîneur-chef Lindy Ruff Dire...
Larus fuscus Larus fuscus Goéland brun adulte bagué.Classification COI Règne Animalia Embranchement Chordata Sous-embr. Vertebrata Classe Aves Ordre Charadriiformes Famille Laridae Genre Larus Statut de conservation UICN LC : Préoccupation mineure EspèceLarus fuscusLinnaeus 1758 Juvénile Le Goéland brun (Larus fuscus) est une espèce d'oiseaux de la famille des Laridae. Son aire de nidification s'étend de l'Islande vers l'est sur une grande partie des côtes européennes ju...
لمعانٍ أخرى، طالع وكالة الفضاء (توضيح). هذه المقالة بحاجة لمراجعة خبير مختص في مجالها. يرجى من المختصين في مجالها مراجعتها وتطويرها. (سبتمبر 2015) وكالة الفضاء الإيرانية وكالة الفضاء الإيرانية اسم مختصر ISA معلومات عامة المقر الرئيسي طهران، قم، مهدشت، شاهرود تأسست 2004 فب�...
Questa voce o sezione sull'argomento quotidiani non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Gazzetta di MantovaStato Italia Linguaitaliano Periodicitàdalla fondazione: 1-3 volte alla settimana;dal 1866: quotidiano Generestampa locale Fondazione1664 SedePiazza Cesare Mozzarelli, 7 - 46100 Mantova EditoreAthesis[1] Tiratura22.309 (luglio ...