Layer of polymer applied to printed circuit boards
"Solder stop mask" and "solder resist" redirect here. For the solder paste/cream stencils, see Solder paste mask.
You can help expand this article with text translated from the corresponding article in German. (June 2018) Click [show] for important translation instructions.
Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia.
Consider adding a topic to this template: there are already 2,207 articles in the main category, and specifying|topic= will aid in categorization.
Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article.
You must provide copyright attribution in the edit summary accompanying your translation by providing an interlanguage link to the source of your translation. A model attribution edit summary is Content in this edit is translated from the existing German Wikipedia article at [[:de:Lötstopplack]]; see its history for attribution.
You may also add the template {{Translated|de|Lötstopplack}} to the talk page.
Solder mask, solder stop mask or solder resist is a thin lacquer-like layer of polymer that is usually applied to the copper traces of a printed circuit board (PCB) for protection against oxidation and to prevent solder bridges from forming between closely spaced solder pads. Soldermask[2] is a printed circuit board (PCB) manufacturing process that uses a chemical or thermosetting resin to coat a thin film on a circuit board, which can effectively form a layer of reliable protection to avoid unwanted short-circuiting and leakage of the circuit board, and to improve the reliability and electrical performance of the circuit board.
A solder bridge is an unintended electrical connection between two conductors by means of a small blob of solder. PCBs use solder masks to prevent this from happening. Solder mask is not always used for hand soldered assemblies, but is essential for mass-produced boards that are soldered automatically using reflow or wave soldering techniques. Once applied, openings must be made in the solder mask wherever components are soldered, which is accomplished using photolithography.[1] Solder mask is traditionally green, but is also available in many other colors.[2]
Solder mask comes in different media depending upon the demands of the application. The lowest-cost solder mask is epoxy liquid that is silkscreened through the pattern onto the PCB. Other types are the liquid photoimageable solder mask (LPSM or LPI) inks and dry-film photoimageable solder mask (DFSM). LPSM can be silkscreened or sprayed on the PCB, exposed to the pattern and developed to provide openings in the pattern for parts to be soldered to the copper pads. DFSM is vacuum-laminated on the PCB then exposed and developed. All three processes typically go through a thermal cure of some type after the pattern is defined although LPI solder masks are also available in ultraviolet (UV) cure.
The solder stop layer on a flexible board is also called coverlay or coverfilm.[3]
In electronic design automation, the solder mask is treated as part of the layer stack of the printed circuit board, and is described in individual Gerber files for the top and bottom side of the PCB like any other layer (such as the copper and silk-screen layers).[4] Typical names for these layers include tStop/bStop aka STC/STS[5][nb 1] or TSM/BSM (EAGLE), F.Mask/B.Mask (KiCad), StopTop/StopBot (TARGET), maskTop/maskBottom (Fritzing), SMT/SMB (OrCAD), MT.PHO/MB.PHO (PADS), LSMVS/LSMRS (WEdirekt)[6] or GTS/GBS (Gerber and many others[7]).
Notes
^The letters 'C' and 'S' in EAGLE's old Gerberfilename extensions.STC/.STS for the top and bottom solder stop mask layers have their origin in times when printed circuit boards were typically equipped with components populated on one side of the board only, the so called "component side" (top) versus the opposite "solder side" (bottom) where these components were soldered (at least in the case of through-hole components).