Solar gain

Solar gain through windows includes energy transmitted directly through the glass and energy absorbed by the glass and frame and then re-radiated into the space.
Solar gain is illustrated by the snow on the roof of this house: sunlight has melted all of the snow, except for the area that is shaded by the chimney to the right.

Solar gain (also known as solar heat gain or passive solar gain) is the increase in thermal energy of a space, object or structure as it absorbs incident solar radiation. The amount of solar gain a space experiences is a function of the total incident solar irradiance and of the ability of any intervening material to transmit or resist the radiation.

Objects struck by sunlight absorb its visible and short-wave infrared components, increase in temperature, and then re-radiate that heat at longer infrared wavelengths. Though transparent building materials such as glass allow visible light to pass through almost unimpeded, once that light is converted to long-wave infrared radiation by materials indoors, it is unable to escape back through the window since glass is opaque to those longer wavelengths. The trapped heat thus causes solar gain via a phenomenon known as the greenhouse effect. In buildings, excessive solar gain can lead to overheating within a space, but it can also be used as a passive heating strategy when heat is desired.[1]

Window solar gain properties

Solar gain is most frequently addressed in the design and selection of windows and doors. Because of this, the most common metrics for quantifying solar gain are used as a standard way of reporting the thermal properties of window assemblies. In the United States, The American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE),[2] and The National Fenestration Rating Council (NFRC)[3] maintain standards for the calculation and measurement of these values.

Shading coefficient

The shading coefficient (SC) is a measure of the radiative thermal performance of a glass unit (panel or window) in a building. It is defined as the ratio of solar radiation at a given wavelength and angle of incidence passing through a glass unit to the radiation that would pass through a reference window of frameless 3 millimetres (0.12 in) Clear Float Glass.[3] Since the quantities compared are functions of both wavelength and angle of incidence, the shading coefficient for a window assembly is typically reported for a single wavelength typical of solar radiation entering normal to the plane of glass. This quantity includes both energy that is transmitted directly through the glass as well as energy that is absorbed by the glass and frame and re-radiated into the space, and is given by the following equation:[4]

Here, λ is the wavelength of radiation and θ is the angle of incidence. "T" is the transmissivity of the glass, "A" is its absorptivity, and "N" is the fraction of absorbed energy that is re-emitted into the space. The overall shading coefficient is thus given by the ratio:

The shading coefficient depends on the radiation properties of the window assembly. These properties are the transmissivity "T" , absorptivity "A", emissivity (which is equal to the absorptivity for any given wavelength), and reflectivity all of which are dimensionless quantities that together sum to 1.[4] Factors such as color, tint, and reflective coatings affect these properties, which is what prompted the development of the shading coefficient as a correction factor to account for this. ASHRAE's table of solar heat gain factors[2] provides the expected solar heat gain for ⅛” clear float glass at different latitudes, orientations, and times, which can be multiplied by the shading coefficient to correct for differences in radiation properties. The value of the shading coefficient ranges from 0 to 1. The lower the rating, the less solar heat is transmitted through the glass, and the greater its shading ability.

In addition to glass properties, shading devices integrated into the window assembly are also included in the SC calculation. Such devices can reduce the shading coefficient by blocking portions of the glazing with opaque or translucent material, thus reducing the overall transmissivity.[5]

Window design methods have moved away from the Shading Coefficient and towards the Solar Heat Gain Coefficient (SHGC), which is defined as the fraction of incident solar radiation that actually enters a building through the entire window assembly as heat gain (not just the glass portion). The standard method for calculating the SHGC also uses a more realistic wavelength-by-wavelength method, rather than just providing a coefficient for a single wavelength like the shading coefficient does.[4] Though the shading coefficient is still mentioned in manufacturer product literature and some industry computer software,[6] it is no longer mentioned as an option in industry-specific texts[2] or model building codes.[7] Aside from its inherent inaccuracies, another shortcoming of the SC is its counter-intuitive name, which suggests that high values equal high shading when in reality the opposite is true. Industry technical experts recognized the limitations of SC and pushed towards SHGC in the United States (and the analogous g-value in Europe) before the early 1990s.[8]

A conversion from SC to SHGC is not necessarily straightforward, as they each take into account different heat transfer mechanisms and paths (window assembly vs. glass-only). To perform an approximate conversion from SC to SHGC, multiply the SC value by 0.87.[3]

g-value

The g-value (sometimes also called a Solar Factor or Total Solar Energy Transmittance) is the coefficient commonly used in Europe to measure the solar energy transmittance of windows. Despite having minor differences in modeling standards compared to the SHGC, the two values are effectively the same. A g-value of 1.0 represents full transmittance of all solar radiation while 0.0 represents a window with no solar energy transmittance. In practice though, most g-values will range between 0.2 and 0.7, with solar control glazing having a g-value of less than 0.5.[9]

Solar heat gain coefficient (SHGC)

SHGC is the successor to the shading coefficient used in the United States and it is the ratio of transmitted solar radiation to incident solar radiation of an entire window assembly. It ranges from 0 to 1 and refers to the solar energy transmittance of a window or door as a whole, factoring in the glass, frame material, sash (if present), divided lite bars (if present) and screens (if present).[3] The transmittance of each component is calculated in a similar manner to the shading coefficient. However, in contrast to the shading coefficient, the total solar gain is calculated on a wavelength-by-wavelength basis where the directly transmitted portion of the solar heat gain coefficient is given by:[4]

Here is the spectral transmittance at a given wavelength in nanometers and is the incident solar spectral irradiance. When integrated over the wavelengths of solar short-wave radiation, it yields the total fraction of transmitted solar energy across all solar wavelengths. The product is thus the portion of absorbed and re-emitted energy across all assembly components beyond just the glass. It is important to note that the standard SHGC is calculated only for an angle of incidence normal to the window. However this tends to provide a good estimate over a wide range of angles, up to 30 degrees from normal in most cases.[3]

SHGC can either be estimated through simulation models or measured by recording the total heat flow through a window with a calorimeter chamber. In both cases, NFRC standards outline the procedure for the test procedure and calculation of the SHGC.[10] For dynamic fenestration or operable shading, each possible state can be described by a different SHGC.

Though the SHGC is more realistic than the SC, both are only rough approximations when they include complex elements such as shading devices, which offer more precise control over when fenestration is shaded from solar gain than glass treatments.[5]

Solar gain in opaque building components

Apart from windows, walls and roofs also serve as pathways for solar gain. In these components heat transfer is entirely due to absorptance, conduction, and re-radiation since all transmittance is blocked in opaque materials. The primary metric in opaque components is the Solar Reflectance Index which accounts for both solar reflectance (albedo) and emittance of a surface.[11] Materials with high SRI will reflect and emit a majority of heat energy, keeping them cooler than other exterior finishes. This is quite significant in the design of roofs since dark roofing materials can often be as much as 50 °C hotter than the surrounding air temperature, leading to large thermal stresses as well as heat transfer to interior space.[5]

Solar gain and building design

Solar gain can have either positive or negative effects depending on the climate. In the context of passive solar building design, the aim of the designer is normally to maximize solar gain within the building in the winter (to reduce space heating demand), and to control it in summer (to minimize cooling requirements). Thermal mass may be used to even out the fluctuations during the day, and to some extent between days.

Control of solar gain

Uncontrolled solar gain is undesirable in hot climates due to its potential for overheating a space. To minimize this and reduce cooling loads, several technologies exist for solar gain reduction. SHGC is influenced by the color or tint of glass and its degree of reflectivity. Reflectivity can be modified through the application of reflective metal oxides to the surface of the glass. Low-emissivity coating is another more recently developed option that offers greater specificity in the wavelengths reflected and re-emitted. This allows glass to block mainly short-wave infrared radiation without greatly reducing visible transmittance.[3]

In climate-responsive design for cold and mixed climates, windows are typically sized and positioned in order to provide solar heat gains during the heating season. To that end, glazing with a relatively high solar heat gain coefficient is often used so as not to block solar heat gains, especially in the sunny side of the house. SHGC also decreases with the number of glass panes used in a window. For example, in triple glazed windows, SHGC tends to be in the range of 0.33 - 0.47. For double glazed windows SHGC is more often in the range of 0.42 - 0.55.

Different types of glass can be used to increase or to decrease solar heat gain through fenestration, but can also be more finely tuned by the proper orientation of windows and by the addition of shading devices such as overhangs, louvers, fins, porches, and other architectural shading elements.

Passive solar heating

Passive solar heating is a design strategy that attempts to maximize the amount of solar gain in a building when additional heating is desired. It differs from active solar heating which uses exterior water tanks with pumps to absorb solar energy because passive solar systems do not require energy for pumping and store heat directly in structures and finishes of occupied space.[12]

In direct solar gain systems, the composition and coating of the building glazing can also be manipulated to increase the greenhouse effect by optimizing their radiation properties, while their size, position, and shading can be used to optimize solar gain. Solar gain can also be transferred to the building by indirect or isolated solar gain systems.

Passive solar designs typically employ large equator facing windows with a high SHGC and overhangs that block sunlight in summer months and permit it to enter the window in the winter. When placed in the path of admitted sunlight, high thermal mass features such as concrete slabs or trombe walls store large amounts of solar radiation during the day and release it slowly into the space throughout the night.[13] When designed properly, this can modulate temperature fluctuations. Some of the current research into this subject area is addressing the tradeoff between opaque thermal mass for storage and transparent glazing for collection through the use of transparent phase change materials that both admit light and store energy without the need for excessive weight.[14]

See also

References

  1. ^ Frota, Anesia Barros (1999). Manual de conforto termico. Sueli Ramos Schiffer (3rd ed.). Sao Paulo: Studio Nobel. ISBN 85-85445-39-4. OCLC 46753712.
  2. ^ a b c ASHRAE (2013). "Chapter 15. Fenestration". ASHRAE Handbook: Fundamentals. Atlanta, GA: ASHRAE.
  3. ^ a b c d e f ANSI/NFRC 200-2017: Procedure for Determining Fenestration Product Solar Heat Gain Coefficient and Visible Transmittance at Normal Incidence., NFRC, 2017, retrieved 9 November 2017
  4. ^ a b c d McCluney, Ross (1996), Fenestration Solar Gain Analysis, Florida Solar Energy Center/University of Central Florida, CiteSeerX 10.1.1.30.2472
  5. ^ a b c Lechner, Norbert (2009). Heating, Cooling, Lighting: Sustainable Design Methods for Architects (3rd ed.). John Wiley & Sons. pp. 250–252. ISBN 9780470048092.
  6. ^ "WINDOW Documentation". Retrieved 7 October 2017.
  7. ^ ICC (2009). 2009 International Energy Conservation Code.
  8. ^ McCluney, Ross (1991). "The Death of the Shading Coefficient?". ASHRAE Journal (March): 36–45. Retrieved 7 October 2017.
  9. ^ "British Fenestration Rating Council". BFRC. Retrieved 9 November 2017.
  10. ^ ANSI/NFRC 201-2017: Procedure for Interim Standard Test Method for Measuring the Solar Heat Gain Coefficient of Fenestration Systems Using Calorimetry Hot Box Methods, NFRC, p. 19
  11. ^ "Standard Practice for Calculating Solar Reflectance Index of Horizontal and Low-Sloped Opaque Surfaces". West Conshohocken, PA: ASTM International. 2001. doi:10.1520/E1980-11.
  12. ^ Balcomb, J.D; Hedstrom, J.C; McFarland, R.D (1977). "Simulation analysis of passive solar heated buildings—Preliminary results". Solar Energy. 19 (3): 2–12. Bibcode:1977SoEn...19..277B. doi:10.1016/0038-092X(77)90071-8.
  13. ^ Balcomb, J.Douglas, editor. Passive Solar Buildings. MIT Press, 1992.[page needed]
  14. ^ Manz, H; Egolf, P.W; Suter, P; Goetzberger, A (1997). "TIM–PCM external wall system for solar space heating and daylighting". Solar Energy. 61 (6): 369. Bibcode:1997SoEn...61..369M. doi:10.1016/S0038-092X(97)00086-8.

Read other articles:

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2019) دوري الدرجة الثالثة الإيراني 2011–12 تفاصيل الموسم الدوري الإيراني الدرجة الثالثة  البلد إيران  دوري الدرجة الثالثة الإيراني 2010–11  دوري الدرجة الثال...

 

 

Regno di Libia (dettagli) (dettagli) Motto: Libia, Libia, Libia Regno di Libia - Localizzazione Dati amministrativiNome completoRegno Unito di Libia (fino al 1963)Regno di Libia (dal 1963) Nome ufficialeRegno Unito di Libia - المملكة الليبية المتحدة (fino al 1963)Regno di Libia - المملكة الليبية (dal 1963) Lingue ufficialiarabo Lingue parlatearabo, italiano InnoLibia, Libia, Libia CapitaleTripoli Altre capitaliBengasi, Beida PoliticaForma di StatoMonarchia c...

 

 

Massacre of ethnic poles on 29 August 1943 Głęboczyca massacreGłęboczyca ŁuckBrześćLwówKrakówPoznańWarsawWilnoStanisławówclass=notpageimage| Location of the Massacre (map of the Second Polish Republic from before the German-Soviet invasion of 1939)LocationGłęboczyca, Volhynian Voivodeship, occupied PolandCoordinates50°50′53″N 24°19′20″E / 50.84806°N 24.32222°E / 50.84806; 24.32222Date29 August 1943TargetPolesAttack typeShooting and stabbi...

OsascoMunicipalityThe Municipality of Osasco BenderaLambangJulukan: OzCountry BrazilRegionSoutheastState São PauloPemerintahan • MayorEmidio Pereira de Souza (PT)Luas • Total65 km2 (25 sq mi)Ketinggian760 m (2,490 ft)Populasi (2008)[1] • Total718.643 • Kepadatan10.981,2/km2 (284,410/sq mi)Zona waktuUTC-3 (UTC-3) • Musim panas (DST)UTC-2 (UTC-2)Postal Code06000-000Kode area te...

 

 

Biografi ini memerlukan lebih banyak catatan kaki untuk pemastian. Bantulah untuk menambahkan referensi atau sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus, khususnya jika berpotensi memfitnah.Cari sumber: Hamengkubuwana VI – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Hamengkubuwana VIꦲꦩꦼꦁ�...

 

 

American photographer Pete TurnerTurner circa 1980BornDonald Peter Turner(1934-05-30)May 30, 1934Albany, New York, U.S.DiedSeptember 18, 2017(2017-09-18) (aged 83)Wainscott, New York, U.S.NationalityAmericanAlma materRochester Institute of TechnologyOccupationPhotographerSpouse Reine Angeli ​(m. 1965⁠–⁠2017)​Children1 Donald Peter Turner (May 30, 1934 – September 18, 2017)[1] was an American photographer. In 1986, Turner pub...

Cet article est une ébauche concernant une chronologie ou une date et la Belgique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Chronologie de la Belgique ◄◄ 1868 1869 1870 1871 1872 1873 1874 1875 1876 ►► Chronologies Données clés 1867 1868 1869  1870  1871 1872 1873Décennies :1840 1850 1860  1870  1880 1890 1900Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillén...

 

 

Overview of tourism in Gibraltar Greeting sign at the Gibraltar Cruise Terminal. Tourism in Gibraltar constitutes one of the British Overseas Territory's most important economic pillars, alongside financial services and shipping.[1] Gibraltar's main attractions are the Rock of Gibraltar and its resident population of Barbary macaques (or apes), the territory's military heritage, duty-free shopping, casinos and marinas.[2] Although the population of Gibraltar numbers only some ...

 

 

Waktu Musim Panas Britania (bahasa Inggris: British Summer Time: BST atau Greenwich Daylight Saving Time: GDT) adalah jam sipil selama musim panas di Britania Raya di mana jam diset sejam lebih awal dari Greenwich Mean Time (GMT). Ketentuan ini ditentukan pada Perjanjian Jam Musim Panas 1916 (Summer Time Act of 1916), yang diamendemen oleh perjanjian-perjanjian berikutnya, dan kini didefinisikan oleh Aturan Jam Musim Panas 2002 (Summer Time Order of 2002) sebagai:...suatu periode yang diawali...

Gunnerales Gunnerales Gunnera tinctoriaTaksonomiKerajaanPlantaeSubkerajaanViridiplantaeInfrakerajaanStreptophytaSuperdivisiEmbryophytaDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsOrdoGunnerales Reveal, 1992 Tata namaEx taxon authorTakht. Famililihat teks.lbs Gunnerales adalah salah satu ordo tumbuhan berbunga yang termasuk dalam klad core Eudikotil, Eudikotil menurut Sistem klasifikasi APG II). Bangsa ini mencakup dua genera: Gunnera ...

 

 

Town in Massachusetts, United StatesDedham, MassachusettsTownTown of DedhamThe Ames Schoolhouse, Dedham's Town Hall FlagSealMotto: ContentmentLocation of Dedham in Norfolk County, MassachusettsCoordinates: 42°14′30″N 71°10′00″W / 42.24167°N 71.16667°W / 42.24167; -71.16667CountryUnited StatesStateMassachusettsCountyNorfolkSettled1635Incorporated1636Named forDedham, EssexGovernment • TypeRepresentative town meeting • Town &...

 

 

Simplified, minimalistic lifestyle Simple life redirects here. For other uses, see Simple Life (disambiguation). Mahatma Gandhi spinning yarn in 1942. Gandhi believed in a life of simplicity and self-sufficiency. Simple living refers to practices that promote simplicity in one's lifestyle. Common practices of simple living include reducing the number of possessions one owns, depending less on technology and services, and spending less money.[1][2] In addition to such external ...

Constituency of the National Assembly of France 4th constituency of DoubsinlineConstituency of the National Assembly of FranceThe constituency shown within Franche-ComtéIncumbent deputyGéraldine GrangierRNDepartmentDoubsCantonsAudincourt, Étupes, Hérimoncourt, Pont-de-Roide, Sochaux-Grand-Charmont, ValentigneyRegistered voters66,862 (2017) Politics of France Political parties Elections Previous Next The 4th constituency of Doubs (French: Quatrième circonscription du Doubs) is one of five...

 

 

This template does not require a rating on Wikipedia's content assessment scale.It is of interest to the following WikiProjects:Trains Trains Portal This template is within the scope of WikiProject Trains, an attempt to build a comprehensive and detailed guide to rail transport on Wikipedia. If you would like to participate, you can visit the project page, where you can join the project and/or contribute to the discussion. See also: WikiProject Trains to do list and the Trains Portal.TrainsW...

 

 

Roman catholic, coeducational school in New York CityCristo Rey New York High SchoolAddress112 East 106th Street (East Harlem, Manhattan)New York City, New York 10029United StatesCoordinates40°47′33″N 73°56′50″W / 40.79250°N 73.94722°W / 40.79250; -73.94722InformationTypeRoman Catholic, coeducationalMottoThe School That Works[1]Established2004 (20 years ago) (2004)FounderFr. Joseph Parkes, SJ; Bill FordPresidentDaniel DoughertyDeanRos...

此條目或其章節极大或完全地依赖于某个单一的来源。请协助補充多方面可靠来源以改善这篇条目。致使用者:请搜索一下条目的标题(来源搜索:贾德昌 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)贾德昌 (1969年—),哈尔滨工业大学材料学院特种陶瓷研究所所长、教授,主要从事极端苛刻服役环境用先进陶瓷与陶瓷�...

 

 

Chronologies Chronologie du sport 1921 1922 1923  1924  1925 1926 1927Mois :Jan - Fév - Mar - Avr - Mai - Juin Juil - Aoû - Sep - Oct - Nov - Déc 1923 ◄◄ 1924 en sport ►► 1925 Chronologie dans le monde 1921 1922 1923  1924  1925 1926 1927Décennies :1890 1900 1910  1920  1930 1940 1950Siècles :XVIIIe XIXe  XXe  XXIe XXIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algé...

 

 

У этого топонима есть и другие значения, см. Громы. СтанцияГромыПолоцк-НевельБелорусская железная дорога 55°29′ с. ш. 28°48′ в. д.HGЯO Отделение ж. д. Витебское Дата открытия 1905 Прежние названия Полоцк-2, Полоцк-Громы, Парк Громы (неофициальное) Тип пассажирские, грузо...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字(ヘブライ文字)が含まれています(詳細)。 ヘブライ語 עברית, Ivrit クムランで発見された最も長い死海文書のひとつ、Temple Scrollの一部発音 IPA: 近代: [ivˈʁit] – 古代: [ʕib'rit][注釈 1]話される国 イスラエル および世界中のユダヤ系居住区地域 イスラエルとその占領地など民族 イスラエル ...

 

 

Ritratto di Jodocus Hondius Jodocus Hondt[1][2][3] (conosciuto anche con la versione latinizzata Jodocus Hondius del suo nome olandese: Joost de Hondt), anche chiamato Jodocus Hondius il Vecchio (Wakken, 17 ottobre 1563 – Amsterdam, 12 febbraio 1612) è stato un incisore, cartografo e editore fiammingo. È conosciuto soprattutto per le mappe del Nuovo Mondo e dell'Europa, per aver continuato l'opera di Mercatore e per i ritratti di Sir Francis Drake. È grazie a uomi...