Simple ring

In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field.

The center of a simple ring is necessarily a field. It follows that a simple ring is an associative algebra over this field. It is then called a simple algebra over this field.

Several references (e.g., Lang (2002) or Bourbaki (2012)) require in addition that a simple ring be left or right Artinian (or equivalently semi-simple). Under such terminology a non-zero ring with no non-trivial two-sided ideals is called quasi-simple.

Rings which are simple as rings but are not a simple module over themselves do exist: a full matrix ring over a field does not have any nontrivial two-sided ideals (since any ideal of is of the form with an ideal of ), but it has nontrivial left ideals (for example, the sets of matrices which have some fixed zero columns).

An immediate example of a simple ring is a division ring, where every nonzero element has a multiplicative inverse, for instance, the quaternions. Also, for any , the algebra of matrices with entries in a division ring is simple.

Joseph Wedderburn proved that if a ring is a finite-dimensional simple algebra over a field , it is isomorphic to a matrix algebra over some division algebra over . In particular, the only simple rings that are finite-dimensional algebras over the real numbers are rings of matrices over either the real numbers, the complex numbers, or the quaternions.

Wedderburn proved these results in 1907 in his doctoral thesis, On hypercomplex numbers, which appeared in the Proceedings of the London Mathematical Society. His thesis classified finite-dimensional simple and also semisimple algebras over fields. Simple algebras are building blocks of semisimple algebras: any finite-dimensional semisimple algebra is a Cartesian product, in the sense of algebras, of finite-dimensional simple algebras.

One must be careful of the terminology: not every simple ring is a semisimple ring, and not every simple algebra is a semisimple algebra. However, every finite-dimensional simple algebra is a semisimple algebra, and every simple ring that is left- or right-artinian is a semisimple ring.

An example of a simple ring that is not semisimple is the Weyl algebra. The Weyl algebra also gives an example of a simple algebra that is not a matrix algebra over a division algebra over its center: the Weyl algebra is infinite-dimensional, so Wedderburn's theorem does not apply.

Wedderburn's result was later generalized to semisimple rings in the Wedderburn–Artin theorem: this says that every semisimple ring is a finite product of matrix rings over division rings. As a consequence of this generalization, every simple ring that is left- or right-artinian is a matrix ring over a division ring.

Examples

Let be the field of real numbers, be the field of complex numbers, and the quaternions.

  • A central simple algebra (sometimes called a Brauer algebra) is a simple finite-dimensional algebra over a field whose center is .
  • Every finite-dimensional simple algebra over is isomorphic to an algebra of matrices with entries in , , or . Every central simple algebra over is isomorphic to an algebra of matrices with entries or . These results follow from the Frobenius theorem.
  • Every finite-dimensional simple algebra over is a central simple algebra, and is isomorphic to a matrix ring over .
  • Every finite-dimensional central simple algebra over a finite field is isomorphic to a matrix ring over that field.
  • The algebra of all linear transformations of an infinite-dimensional vector space over a field is a simple ring that is not a semisimple ring. It is also a simple algebra over that is not a semisimple algebra.

See also

References

Read other articles:

BBD beralih ke halaman ini. Untuk mata uang Barbados (kode ISO 4217: BBD), lihat Dolar Barbados. PT Bank Bumi Daya (Persero)Bekas kantor pusat bank ini, kini menjadi Graha MandiriJenisBadan usaha milik negaraIndustriJasa keuanganNasibDigabungPendahuluDe Nationale Handelsbank NVPenerusBank MandiriDidirikan15 Agustus 1959 (sebagai Bank Umum Negara, dianggap hari lahir Perseroan)30 Juli 1965 (sebagai Bank Negara Indonesia Unit IV)18 Desember 1968 (sebagai Bank Bumi Daya)PendiriPemerintah Indones...

 

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...

 

Ubur-ubur Chrysaora colorata Klasifikasi ilmiah Kerajaan: Animalia Filum: Cnidaria Subfilum: Medusozoa Kelompok yang disertakan Acraspeda Cubozoa Scyphozoa Staurozoa beberapa Hydrozoa secara kladistik, tetapi secara tradisional mengecualikan taksa Hydra Anatomi ubur-ubur Ubur-ubur adalah sejenis binatang laut tak bertulang belakang yang termasuk dalam filum Cnidaria, ubur-ubur yang dimaksud di sini adalah hewan dari kelas Schypozoa, sehingga sering disebut ubur-ubur sejati agar tidak dibingu...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Liberal Party of Canada leadership elections – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this template message) The first three leaders of the Liberal Party of Canada were not chosen at a leadership convention. A...

Emmanuelle CharpentierEmmanuelle Charpentier, Agustus 2015Lahir11 Desember 1968 (umur 55)Juvisy-sur-Orge, PrancisKebangsaanPrancisAlmamaterUniversitas Pierre dan Marie Curie (saat ini Fakultas Sains Universitas Sorbonne)Institut PasteurDikenal atasCRISPR[1]PenghargaanPenghargaan Louis-Jeantet untuk Kedokteran (2015)[2]Karier ilmiahBidang Mikrobiologi Genetika Biokimia InstitusiUniversitas WinaUniversitas UmeåPerkumpulan Max Planck Situs webwww.emmanuelle-charpentier-lab...

 

Illegal in Russia Prostitution is illegal in Russia. The punishment for engagement in prostitution is a fine from 1500 up to 2000 rubles.[1] Moreover, organizing prostitution is punishable by a prison term. Prostitution remains a very serious social issue in Russia.[2][3][4][5] Historical overview See also: Karayuki-san Yellow tickets were special ID cards issued to prostitutes Prostitution in Russia became common after Peter the Great's military reform...

 

2004 compilation album by The Jerky BoysThe Ultimate Jerky BoysCompilation album by The Jerky BoysReleasedOctober 24, 2004Recorded1992-1996GenrePrank CallsLabelSelectThe Jerky Boys chronology The Best of the Jerky Boys(2002) The Ultimate Jerky Boys(2004) Professional ratingsReview scoresSourceRatingAllmusic [1] The Ultimate Jerky Boys is a double-disc compilation album by the Jerky Boys. It was released on October 26, 2004. Track listing Disc one Sol's Civil War Memorabilia So...

Theodor van EupenAnnouncement about the founding of Treblinka Arbeitslager run by EupenBorn24 April 1907Düsseldorf, GermanyDied11 December 1944(1944-12-11) (aged 37)Lipówka, near Jędrzejów, Poland[1]Allegiance Nazi GermanyService/branch Schutzstaffel (SS)RankSturmbannführerUnitSS-TotenkopfverbändeCommands heldDeputy commandant of Treblinka extermination camp Theodor van Eupen (24 April 1907 – 11 December 1944) was a member of the SS of Nazi Germany. A Holocaust perp...

 

Non-depth-compensated passive addition semi-closed circuit rebreather The Halcyon RB80 is a non-depth-compensated passive addition semi-closed circuit rebreather of similar external dimensions to a standard AL80 scuba cylinder (11-litre, 207-bar aluminium cylinder, 185 mm diameter and about 660 mm long). It was originally developed by Reinhard Buchaly (RB) in 1996 for the cave exploration dives conducted by the European Karst Plain Project (EKPP).[1] About 1/10 of the respir...

 

Tarian Lengger Banyumasan Lengger atau disebut juga ronggeng adalah kesenian asli Banyumas berupa tari tradisional yang dimainkan oleh 2 sampai 4 orang pria serupa wanita yang didandani dengan pakaian khas. Kesenian lengger Banyumasan ini diiringi oleh musik calung, gamelan yang terbuat dari bambu. Nama tarian ini pernah disebut dalam novel trilogi Ronggeng dukuh Paruk karya sastrawan Ahmad Tohari. Lengger, berasal dari kata eling ngger.[1] Ada juga yang menyebut lengger berarti le da...

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

Koordinat: 40°29′N 127°12′E / 40.483°N 127.200°E / 40.483; 127.200 (Rawa Jangjin) Pertempuran Rawa Chosin, juga dikenal sebagai Kampanye Rawa Chosin atau Pertempuran Danau Jangjin (Hangul: 장진호 전투; Hanja: 長津湖戰鬪; RR: Jangjinho jeontu; MR: Changjinho chŏnt'u), adalah sebuah pertempuran penting dalam Perang Korea.[a] Nama Chosin berasal dari pengucapan Jepang Chōshin, alih-alih pe...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

This is a dynamic list and may never be able to satisfy particular standards for completeness. You can help by adding missing items with reliable sources. Stratocaster Headstock This is a list of musicians who have made notable use of the Fender Stratocaster in live performances or studio recordings. The Fender Stratocaster was designed by Leo Fender and Freddie Tavares with involvement from musicians Rex Gallion and Bill Carson in the early 1950s, and since its commercial introduction in 19...

 

The Great Artiste The Great Artiste Jenis Boeing B-29A-40-MO Superfortress Pembuat Glenn L. Martin Company, Omaha, Nebraska Serial 44-27353 Beroperasi 20 April 1945 sampai 3 September 1948 Nasib Crashed on take-off at Goose Bay Air Base, Labrador and scrapped. The Great Artiste adalah sebuah pesawat pengebom B-29 Silverplate Pasukan Udara Angkatan Darat AS (B-29A-40-MO 44-27353, nomor Victor 89), yang digunakan pada Skuadron Bom 393d, 509th Composite Group. Pesawat tersebut menerbangkan 12 m...

 

2010 World JuniorChampionships in AthleticsTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen3000 mwomen5000 mmenwomen10,000 mmen100 m hurdleswomen110 m hurdlesmen400 m hurdlesmenwomen3000 msteeplechasemenwomen4 × 100 m relaymenwomen4 × 400 m relaymenwomen10,000 m walkmenwomenField eventsHigh jumpmenwomenPole vaultmenwomenLong jumpmenwomenTriple jumpmenwomenShot putmenwomenDiscus throwmenwomenHammer throwmenwomenJavelin throwmenwomenCombined eventsHeptathlonwome...

تحتاج النصوص المترجمة في هذه المقالة إلى مراجعة لضمان معلوماتها وإسنادها وأسلوبها ومصطلحاتها ووضوحها للقارئ، لأنها تشمل ترجمة اقتراضية أو غير سليمة. فضلاً ساهم في تطوير هذه المقالة بمراجعة النصوص وإعادة صياغتها بما يتناسب مع دليل الأسلوب في ويكيبيديا. اضغط هنا للاطلاع ع�...

 

Oil field in Kern County, California, USA The South Belridge Oil Field in Southern and Central California. Other oil fields are shown in gray. The South Belridge Oil Field is a large oil field in northwestern Kern County, San Joaquin Valley, California, about forty miles west of Bakersfield. Discovered in 1911, and having a cumulative production of over 2,000 million barrels (320,000,000 m3) of oil equivalent at the end of 2023, it is the fourth-largest oil field in California, after the...