The formation, named by Laird in 1963, crops out in the Churchill Mountains, part of the Transantarctic Mountains of southwestern Antarctica. The most complete exposures are in the Holyoake Range.[2] Paleontological data and carbon isotope stratigraphy indicate that the Shackleton Limestone ranges from lower Atdabanian through upper Botomian. The formation is a thick carbonate deposit with a lower unit of unfossiliferous interbedded quartzite and limestone, overlies the Late Proterozoic argillaceousturbiditeGoldie Formation and underlies the Starshot Formation.[2][3] Other lithologies noted in the Shackleton Limestone are marble with breccia, conglomerate, sandstone and shale.[4] The abrupt transition from the Shackleton Limestone to a large-scale, upward coarsening siliciclastic succession records deepening of the outer platform and then deposition of an eastward-prograding molassic wedge. The various formations of the upper Byrd Group show general stratigraphic and age equivalence, such that coarse-grained alluvial fan deposits of the Douglas Conglomerate are proximal equivalents of the marginal-marine to shelf deposits of the Starshot Formation.[5]
The sandstone-rich lower member of the Shackleton Limestone is exposed at Cotton Plateau beneath Panorama Point, where it consists of up to 133 metres (436 ft) of interbedded white- to cream-weathering, vitreous, quartzsandstone and brown-weathering, white, fine-grained dolomiticgrainstone. These beds are in fault contact with the adjacent Goldie Formation.[6] The formation postdates the Beardmore Orogeny of the Neoproterozoic,[7] and was deformed by the Ross Orogeny.[8]
^Rowell, A.J.; Rees, M.N. (1991). Thomson, M.R.A.; Crame, J.A.; Thomson, J.W. (eds.). Setting and significance of the Shackleton Limestone, central Transantarctic Mountains, in Geological Evolution of Antarctica. Cambridge: Cambridge University Press. pp. 171–175. ISBN9780521372664.