Suppose M is a smooth manifold (not necessarily compact), and E is a smooth vector bundle over M. Then Γ(E), the space of smooth sections of E, is a module over C∞(M) (the commutative algebra of smooth real-valued functions on M). Swan's theorem states that this module is finitely generated and projective over C∞(M). In other words, every vector bundle is a direct summand of some trivial bundle: for some k. The theorem can be proved by constructing a bundle epimorphism from a trivial bundle This can be done by, for instance, exhibiting sections s1...sk with the property that for each point p, {si(p)} span the fiber over p.
When M is connected, the converse is also true: every finitely generated projective module over C∞(M) arises in this way from some smooth vector bundle on M. Such a module can be viewed as a smooth function f on M with values in the n × n idempotent matrices for some n. The fiber of the corresponding vector bundle over x is then the range of f(x). If M is not connected, the converse does not hold unless one allows for vector bundles of non-constant rank (which means admitting manifolds of non-constant dimension). For example, if M is a zero-dimensional 2-point manifold, the module is finitely-generated and projective over but is not free, and so cannot correspond to the sections of any (constant-rank) vector bundle over M (all of which are trivial).
Another way of stating the above is that for any connected smooth manifold M, the section functorΓ from the category of smooth vector bundles over M to the category of finitely generated, projective C∞(M)-modules is full, faithful, and essentially surjective. Therefore the category of smooth vector bundles on M is equivalent to the category of finitely generated, projective C∞(M)-modules. Details may be found in (Nestruev 2003).
Topology
Suppose X is a compact Hausdorff space, and C(X) is the ring of continuous real-valued functions on X. Analogous to the result above, the category of real vector bundles on X is equivalent to the category of finitely generated projective modules over C(X). The same result holds if one replaces "real-valued" by "complex-valued" and "real vector bundle" by "complex vector bundle", but it does not hold if one replace the field by a totally disconnected field like the rational numbers.
which respects the module structure (Várilly, 97). Swan's theorem asserts that the functor Γ is an equivalence of categories.
Algebraic geometry
The analogous result in algebraic geometry, due to Serre (1955, §50) applies to vector bundles in the category of affine varieties. Let X be an affine variety with structure sheaf and a coherent sheaf of -modules on X. Then is the sheaf of germs of a finite-dimensional vector bundle if and only if the space of sections of is a projective module over the commutative ring
References
Karoubi, Max (1978), K-theory: An introduction, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, ISBN978-0-387-08090-1