Sergei Rytov

Sergei Rytov
Сергей Рытов
Born
Sergei Mikhailovich Rytov

(1908-07-03)3 July 1908
Died22 October 1996(1996-10-22) (aged 88)
Alma materMoscow State University
Known for
AwardsOrder of the Red Banner of Labour
A. S. Popov Gold Medal
Scientific career
FieldsRadiophysics, acoustics, electrodynamics
Doctoral advisorLeonid Mandelstam

Sergei Mikhailovich Rytov (Russian: Сергей Михайлович Рытов; 3 July 1908 – 22 October 1996) was a Soviet physicist and member of the Russian Academy of Sciences. Rytov contributed to the fields of statistical radiophysics,[1][2] and fluctuational electrodynamics. The Rytov number for laser propagation in the atmosphere[3] and the Rytov approximation for wave propagation in inhomogeneous media[4][5][6][7][8] bear his name.

Life

Sergei Mikhailovich Rytov was born in Kharkov, Russian Empire in 1908.[2]

Rytov graduated from Moscow State University (MGU) in 1930, and continued his studies as a post-graduate at MGU's Research Institute of Physics, which he completed in 1933.

Later, Rytov worked at the Gorky Research Institute for Engineering Physics (1932–1934), the Lebedev Physical Institute (1934–1938), and finally in the Mints Institute of Radio Engineering until his death. He also lectured in MGU (1930 –1932 and 1934–1938), in the Gorky State University (1932–1934 and 1945–1947) and in the and at the Moscow Institute of Physics and Technology (1947–1978).

Rytov became an expert on the theory of thermal electromagnetic radiation based on the generalization of the fluctuation-dissipation theorem. Evgeny Lifshitz was inspired by Rytov's theory to develop his theory of van der Waals forces in 1955.[9][10][11]

Rytov's work would later be summarized in a series of books Principles of Radiophysics, co-authored with Yurii A. Kravtsov and Valeryan I. Tatarsky on radiophysics (Russian term for the theory of linear and nonlinear wave phenomena), where he discussed a series of topics related on fluctuation phenomena in electronic systems random fields and random propagation waves.[12]

Rytov theory would be simplified by Dirk Polder and Michael van Hove in 1971 to describe thermal radiation between closely spaced bodies. This led to the development of near-field radiative heat transfer theory, to which Rytov also contributed later.[13]

Rytov was well known for his pedagogic skills.[2][12]

Awards

Books

  • Rytov, S. M. (1953). Theory of Electrical Fluctuations and Thermal Radiation. USSR: Publishing House, Russian Academy of Sciences.
  • Levin, M. L.; Rytov, S. M. (1967). Theory of equilibrium thermal fluctuations in electrodynamics. Moscow: Science Publishing.[15]
  • Rytov, Sergei; Kravtsov, Y. A.; Tatarsky, V. I. (1987). Principles of Statistical Radiophysics. Vol. 1. Elements of Random Process Theory. Springer-Verlag.[12]
  • Rytov, Sergei; Kravtsov, Y. A.; Tatarsky, V. I. (1988). Principles of Statistical Radiophysics. Vol. 2. Correlation Theory and Random Processes. Springer-Verlag.[12]
  • Rytov, Sergei; Kravtsov, Y. A.; Tatarsky, V. I. (1989). Principles of Statistical Radiophysics. Vol. 3. Elements of Random Fields. Springer-Verlag.[12]
  • Rytov, Sergei; Kravtsov, Y. A.; Tatarsky, V. I. (1989). Principles of Statistical Radiophysics. Vol. 4. Wave Propagation Through Random Media. Springer-Verlag.[12]

References

  1. ^ Rytov, Sergei Mikhailovich (1953). "[Theory of Electric Fluctuations and Thermal Radiation]". Academy of Sciences Press (in Russian).
  2. ^ a b c Andreev, Aleksandr F.; Borovik-Romanov, A. S.; Bunkin, F. V.; Gaponov-Grekhov, Andrei V.; Gulyaev, Yurii V.; Karlov, Nikolai V.; Kravtsov, Yu A.; Migulin, V. V.; Miller, M. A.; Polevoi, V. G.; Prokhorov, A. M.; Fabelinskii, Immanuil L.; Feinberg, Evgenii L. (1997). "In memory of Sergei Mikhailovich Rytov". Physics-Uspekhi. 40 (7): 749–750. doi:10.1070/pu1997v040n07abeh000258. S2CID 250918795. Retrieved 2021-10-11.
  3. ^ Miller, W. B.; Andrews, L. C. (1993). "Log-amplitude variance and wave structure function: a new perspective for Gaussian beams". Journal of the Optical Society of America A. 10 (3): 661–672. Bibcode:1993JOSAA..10..661M. doi:10.1364/JOSAA.10.000661. Retrieved 2021-10-11.
  4. ^ deWolf, D. A. (1967). "Validity of Rytov's Approximation". Journal of the Optical Society of America. 57 (8): 1057–1058. doi:10.1364/JOSA.57.001057. Retrieved 2021-10-11.
  5. ^ Brown Jr., W. P. (1967). "Validity of the Rytov Approximation". Journal of the Optical Society of America. 57 (12): 1539–1542. doi:10.1364/JOSA.57.001539. Retrieved 2021-10-11.
  6. ^ Keller, Joseph B. (1969). "Accuracy and Validity of the Born and Rytov Approximations". Journal of the Optical Society of America. 59 (8): 1003–1004. doi:10.1364/JOSA.59.001003. Retrieved 2021-10-11.
  7. ^ Devaney, A. J. (1981). "Inverse-scattering theory within the Rytov approximation". Optics Letters. 6 (8): 374–376. Bibcode:1981OptL....6..374D. doi:10.1364/OL.6.000374. PMID 19701437. Retrieved 2021-10-11.
  8. ^ Sung, Yongjin; Barbastathis, George (2013). "Rytov approximation for x-ray phase imaging". Optics Express. 21 (3): 2674–2682. Bibcode:2013OExpr..21.2674S. doi:10.1364/OE.21.002674. PMID 23481723.
  9. ^ Lifshitz, E. M. (1956). "The theory of molecular attractive forces between solids" (PDF). Soviet Phys. JETP.
  10. ^ Zheng, Yi (2014). "Review of fluctuational electrodynamics and its applications to radiative momentum, energy and entropy transport". arXiv:1410.5741 [cond-mat.mes-hall].
  11. ^ Banelli, Giovanni (2016). "Lifshitz interactions and stochastic electrodynamics" (PDF). Jožef Stefan Institute (Third Year Seminar).
  12. ^ a b c d e f Rytov, S. M.; Kravtsov, Yu. A.; Tatarskii, V. I.; Kaplan, Alexander E. (1989-12-01). "Principles of Statistical Radiophysics". Physics Today. 42 (12): 65–66. Bibcode:1989PhT....42l..65R. doi:10.1063/1.2811249. ISSN 0031-9228.
  13. ^ Song, Bai; Fiorino, Anthony; Meyhofer, Edgar; Reddy, Pramod (2015). "Near-field radiative thermal transport: From theory to experiment". AIP Advances. 5 (5): 053503. Bibcode:2015AIPA....5e3503S. doi:10.1063/1.4919048. ISSN 2158-3226.
  14. ^ "Именные премии и медали". www.ras.ru. Retrieved 2023-08-24.
  15. ^ Volokitin, Aleksandr I.; Persson, Bo N. J. (2017-06-09). Electromagnetic Fluctuations at the Nanoscale: Theory and Applications. Springer. ISBN 978-3-662-53474-8.