Separable state

In quantum mechanics, separable states are multipartite quantum states that can be written as a convex combination of product states. Product states are multipartite quantum states that can be written as a tensor product of states in each space. The physical intuition behind these definitions is that product states have no correlation between the different degrees of freedom, while separable states might have correlations, but all such correlations can be explained as due to a classical random variable, as opposed as being due to entanglement.

In the special case of pure states the definition simplifies: a pure state is separable if and only if it is a product state.

A state is said to be entangled if it is not separable. In general, determining if a state is separable is not straightforward and the problem is classed as NP-hard.

Separability of bipartite systems

Consider first composite states with two degrees of freedom, referred to as bipartite states. By a postulate of quantum mechanics these can be described as vectors in the tensor product space . In this discussion we will focus on the case of the Hilbert spaces and being finite-dimensional.

Pure states

Let and be orthonormal bases for and , respectively. A basis for is then , or in more compact notation . From the very definition of the tensor product, any vector of norm 1, i.e. a pure state of the composite system, can be written as

where is a constant. If can be written as a simple tensor, that is, in the form with a pure state in the i-th space, it is said to be a product state, and, in particular, separable. Otherwise it is called entangled. Note that, even though the notions of product and separable states coincide for pure states, they do not in the more general case of mixed states.

Pure states are entangled if and only if their partial states are not pure. To see this, write the Schmidt decomposition of as

where are positive real numbers, is the Schmidt rank of , and and are sets of orthonormal states in and , respectively. The state is entangled if and only if . At the same time, the partial state has the form

It follows that is pure --- that is, is projection with unit-rank --- if and only if , which is equivalent to being separable.

Physically, this means that it is not possible to assign a definite (pure) state to the subsystems, which instead ought to be described as statistical ensembles of pure states, that is, as density matrices. A pure state is thus entangled if and only if the von Neumann entropy of the partial state is nonzero.

Formally, the embedding of a product of states into the product space is given by the Segre embedding.[1] That is, a quantum-mechanical pure state is separable if and only if it is in the image of the Segre embedding.

For example, in a two-qubit space, where , the states , , , are all product (and thus separable) pure states, as is with . On the other hand, states like or are not separable.

Mixed states

Consider the mixed state case. A mixed state of the composite system is described by a density matrix acting on . Such a state is separable if there exist , and which are mixed states of the respective subsystems such that

where

Otherwise is called an entangled state. We can assume without loss of generality in the above expression that and are all rank-1 projections, that is, they represent pure ensembles of the appropriate subsystems. It is clear from the definition that the family of separable states is a convex set.

Notice that, again from the definition of the tensor product, any density matrix, indeed any matrix acting on the composite state space, can be trivially written in the desired form, if we drop the requirement that and are themselves states and If these requirements are satisfied, then we can interpret the total state as a probability distribution over uncorrelated product states.

In terms of quantum channels, a separable state can be created from any other state using local actions and classical communication while an entangled state cannot.

When the state spaces are infinite-dimensional, density matrices are replaced by positive trace class operators with trace 1, and a state is separable if it can be approximated, in trace norm, by states of the above form.

If there is only a single non-zero , then the state can be expressed just as and is called simply separable or product state. One property of the product state is that in terms of entropy,

Extending to the multipartite case

The above discussion generalizes easily to the case of a quantum system consisting of more than two subsystems. Let a system have n subsystems and have state space . A pure state is separable if it takes the form

Similarly, a mixed state ρ acting on H is separable if it is a convex sum

Or, in the infinite-dimensional case, ρ is separable if it can be approximated in the trace norm by states of the above form.

Separability criterion

The problem of deciding whether a state is separable in general is sometimes called the separability problem in quantum information theory. It is considered to be a difficult problem. It has been shown to be NP-hard in many cases [2][3] and is believed to be so in general. Some appreciation for this difficulty can be obtained if one attempts to solve the problem by employing the direct brute force approach, for a fixed dimension. The problem quickly becomes intractable, even for low dimensions. Thus more sophisticated formulations are required. The separability problem is a subject of current research.

A separability criterion is a necessary condition a state must satisfy to be separable. In the low-dimensional (2 X 2 and 2 X 3) cases, the Peres-Horodecki criterion is actually a necessary and sufficient condition for separability. Other separability criteria include (but not limited to) the range criterion, reduction criterion, and those based on uncertainty relations.[4][5][6][7] See Ref.[8] for a review of separability criteria in discrete variable systems.

In continuous variable systems, the Peres-Horodecki criterion also applies. Specifically, Simon [9] formulated a particular version of the Peres-Horodecki criterion in terms of the second-order moments of canonical operators and showed that it is necessary and sufficient for -mode Gaussian states (see Ref.[10] for a seemingly different but essentially equivalent approach). It was later found [11] that Simon's condition is also necessary and sufficient for -mode Gaussian states, but no longer sufficient for -mode Gaussian states. Simon's condition can be generalized by taking into account the higher order moments of canonical operators [12][13] or by using entropic measures.[14][15]

Characterization via algebraic geometry

Quantum mechanics may be modelled on a projective Hilbert space, and the categorical product of two such spaces is the Segre embedding. In the bipartite case, a quantum state is separable if and only if it lies in the image of the Segre embedding. Jon Magne Leinaas, Jan Myrheim and Eirik Ovrum in their paper "Geometrical aspects of entanglement"[16] describe the problem and study the geometry of the separable states as a subset of the general state matrices. This subset have some intersection with the subset of states holding Peres-Horodecki criterion. In this paper, Leinaas et al. also give a numerical approach to test for separability in the general case.

Testing for separability

Testing for separability in the general case is an NP-hard problem.[2][3] Leinaas et al.[16] formulated an iterative, probabilistic algorithm for testing if a given state is separable. When the algorithm is successful, it gives an explicit, random, representation of the given state as a separable state. Otherwise it gives the distance of the given state from the nearest separable state it can find.

See also

References

  1. ^ Gharahi, Masoud; Mancini, Stefano; Ottaviani, Giorgio (October 1, 2020). "Fine-structure classification of multiqubit entanglement by algebraic geometry". Physical Review Research. 2 (4): 043003. arXiv:1910.09665. Bibcode:2020PhRvR...2d3003G. doi:10.1103/PhysRevResearch.2.043003. S2CID 204824024.
  2. ^ a b Gurvits, L., Classical deterministic complexity of Edmonds’ problem and quantum entanglement, in Proceedings of the 35th ACM Symposium on Theory of Computing, ACM Press, New York, 2003.
  3. ^ a b Sevag Gharibian, Strong NP-Hardness of the Quantum Separability Problem, Quantum Information and Computation, Vol. 10, No. 3&4, pp. 343-360, 2010. arXiv:0810.4507.
  4. ^ Hofmann, Holger F.; Takeuchi, Shigeki (September 22, 2003). "Violation of local uncertainty relations as a signature of entanglement". Physical Review A. 68 (3): 032103. arXiv:quant-ph/0212090. Bibcode:2003PhRvA..68c2103H. doi:10.1103/PhysRevA.68.032103. S2CID 54893300.
  5. ^ Gühne, Otfried (March 18, 2004). "Characterizing Entanglement via Uncertainty Relations". Physical Review Letters. 92 (11): 117903. arXiv:quant-ph/0306194. Bibcode:2004PhRvL..92k7903G. doi:10.1103/PhysRevLett.92.117903. PMID 15089173. S2CID 5696147.
  6. ^ Gühne, Otfried; Lewenstein, Maciej (August 24, 2004). "Entropic uncertainty relations and entanglement". Physical Review A. 70 (2): 022316. arXiv:quant-ph/0403219. Bibcode:2004PhRvA..70b2316G. doi:10.1103/PhysRevA.70.022316. S2CID 118952931.
  7. ^ Huang, Yichen (July 29, 2010). "Entanglement criteria via concave-function uncertainty relations". Physical Review A. 82 (1): 012335. Bibcode:2010PhRvA..82a2335H. doi:10.1103/PhysRevA.82.012335.
  8. ^ Gühne, Otfried; Tóth, Géza (2009). "Entanglement detection". Physics Reports. 474 (1–6): 1–75. arXiv:0811.2803. Bibcode:2009PhR...474....1G. doi:10.1016/j.physrep.2009.02.004. S2CID 119288569.
  9. ^ Simon, R. (2000). "Peres-Horodecki Separability Criterion for Continuous Variable Systems". Physical Review Letters. 84 (12): 2726–2729. arXiv:quant-ph/9909044. Bibcode:2000PhRvL..84.2726S. doi:10.1103/PhysRevLett.84.2726. PMID 11017310. S2CID 11664720.
  10. ^ Duan, Lu-Ming; Giedke, G.; Cirac, J. I.; Zoller, P. (2000). "Inseparability Criterion for Continuous Variable Systems". Physical Review Letters. 84 (12): 2722–2725. arXiv:quant-ph/9908056. Bibcode:2000PhRvL..84.2722D. doi:10.1103/PhysRevLett.84.2722. PMID 11017309. S2CID 9948874.
  11. ^ Werner, R. F.; Wolf, M. M. (2001). "Bound Entangled Gaussian States". Physical Review Letters. 86 (16): 3658–3661. arXiv:quant-ph/0009118. Bibcode:2001PhRvL..86.3658W. doi:10.1103/PhysRevLett.86.3658. PMID 11328047. S2CID 20897950.
  12. ^ Shchukin, E.; Vogel, W. (2005). "Inseparability Criteria for Continuous Bipartite Quantum States". Physical Review Letters. 95 (23): 230502. arXiv:quant-ph/0508132. Bibcode:2005PhRvL..95w0502S. doi:10.1103/PhysRevLett.95.230502. PMID 16384285. S2CID 28595936.
  13. ^ Hillery, Mark; Zubairy, M.Suhail (2006). "Entanglement Conditions for Two-Mode States". Physical Review Letters. 96 (5): 050503. arXiv:quant-ph/0507168. Bibcode:2006PhRvL..96e0503H. doi:10.1103/PhysRevLett.96.050503. PMID 16486912. S2CID 43756465.
  14. ^ Walborn, S.; Taketani, B.; Salles, A.; Toscano, F.; de Matos Filho, R. (2009). "Entropic Entanglement Criteria for Continuous Variables". Physical Review Letters. 103 (16): 160505. arXiv:0909.0147. Bibcode:2009PhRvL.103p0505W. doi:10.1103/PhysRevLett.103.160505. PMID 19905682. S2CID 10523704.
  15. ^ Yichen Huang (October 2013). "Entanglement Detection: Complexity and Shannon Entropic Criteria". IEEE Transactions on Information Theory. 59 (10): 6774–6778. doi:10.1109/TIT.2013.2257936. S2CID 7149863.
  16. ^ a b Leinaas, Jon Magne; Myrheim, Jan; Ovrum, Eirik (July 19, 2006). "Geometrical aspects of entanglement". Physical Review A. 74 (1). arXiv:quant-ph/0605079. doi:10.1103/PhysRevA.74.012313. ISSN 1050-2947.

Read other articles:

Contoh keindahan metode, yaitu bukti teorema Pythagoras yang sederhana dan elegan. Keindahan matematis adalah gagasan bahwa beberapa matematikawan dapat merasakan kesenangan estetis dari matematika secara umum. Mereka mendeskripsikan kesenangan ini dengan menyebut matematika (atau aspek matematika) sebagai sesuatu yang indah. Kadang-kadang, matematikawan mendeskripsikan matematika sebagai suatu seni atau kegiatan kreatif yang dapat disandingkan dengan musik dan puisi. Bertrand Russell mendesk...

 

Gunung KarangetangTitik tertinggiKetinggian1.827 m / 5.994 kaki (Puncak Selatan),1.784 m / 5.853 kaki ({Puncak Utara)Koordinat2°46′40″N 125°24′27″E / 2.77778°N 125.40750°E / 2.77778; 125.40750 GeografiLetakSiau, IndonesiaGeologiJenis gunungStratovolcano[1] Gunung Karangetang (dikenal juga dengan nama Api Siau) adalah gunung berapi yang terletak di bagian utara Sulawesi Utara, Indonesia tepatnya di Kabupaten Kepulauan Siau Tagulandang Biaro. Gu...

 

1985 film For the 1979 film, see Agniparvatham. Agni ParvatamPosterTeluguఅగ్ని పర్వతం Directed byK. Raghavendra RaoWritten byParuchuri BrothersProduced byC. Ashwini DuttStarringKrishnaVijayashantiRadha SatyanarayanaJaggayyaRao Gopal RaoPrabhakar ReddySharadaPoornimaCinematographyK. S. PrakashEdited byKotagiri Venkateswara RaoMusic byK. ChakravarthyRelease date 11 January 1985 (1985-01-11) Running time143 min.CountryIndiaLanguageTelugu Agni Parvatam (transl...

English department store chain This article is about the department store. For other uses, see Selfridge (disambiguation). Selfridges Retail LimitedSelfridges flagship store in LondonTrade nameSelfridgesCompany typePrivate limited companyIndustryRetailGenreDepartment storeFounded1908; 116 years ago (1908)[1]FounderHarry Gordon SelfridgeHeadquarters400 Oxford StreetLondon, United KingdomNumber of locationsFour:Oxford Street, LondonTrafford Centre, ManchesterExchange S...

 

Medical speciality within the area of pulmonology that deals with tuberculosis Plaque honouring Robert W. Philip, phthisiologist in Edinburgh Phthisiology is the care, treatment, and study of tuberculosis of the lung. It is therefore considered a specialisation within the area of pulmonology.[1] The term derives from the designation by Hippocrates of phthisis (Greek φθίσις) meaning consumption. References ^ Khovanov, A. V.; Nechaev, V. I.; Barkov, V. A. (2007-01-01). [Geoinf...

 

Season for the Major League Baseball team the New York Yankees Major League Baseball team season 2004 New York YankeesAmerican League East ChampionsLeagueAmerican LeagueDivisionEastBallparkYankee StadiumCityNew YorkRecord101–61 (.623)Divisional place1stOwnersGeorge SteinbrennerGeneral managersBrian CashmanManagersJoe TorreTelevisionWCBS-TVYES Network(Michael Kay, Jim Kaat, Ken Singleton, Bobby Murcer, Paul O'Neill, Joe Girardi)RadioWCBS (AM)(John Sterling, Charley Steiner)WADO(Armando ...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Pertanian Umum Agribisnis Agroindustri Agronomi Ilmu pertanian Jelajah bebas Kebijakan pertanian Lahan usaha tani Mekanisasi pertanian Menteri Pertanian Perguruan tinggi pertanian Perguruan tinggi pertanian di Indonesia Permakultur Pertanian bebas ternak Pertanian berkelanjutan Pertanian ekstensif Pertanian intensif Pertanian organik Pertanian urban Peternakan Peternakan pabrik Wanatani Sejarah Sejarah pertanian Sejarah pertanian organik Revolusi pertanian Arab Revolusi pertanian Inggris Revo...

 

Peta infrastruktur dan tata guna lahan di Komune Rilhac-Lastours.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiRilhac-Lastours merupakan sebuah komune di departemen Haute-Vienne di Prancis. Lihat pula Komune di departemen Haute-Vienne Referensi INSEE lbsKomune di departemen Haute-Vienne Aixe-sur-Vienne Ambazac Arnac-la-Poste Augne Aureil Azat-le-Ris Balledent La...

У этого термина существуют и другие значения, см. Горностай (значения). Горностай Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:Челюстнороты...

 

Cet article est une ébauche concernant une unité ou formation militaire française. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. 18e régiment de chasseurs à cheval Insigne du 18 RCC Création 1793 Dissolution 1962 Pays France Branche Armée de terre Type Régiment de chasseurs Rôle Cavalerie légère Inscriptionssur l’emblème Mataró, 1823Les Deux Morins 1914 Flandres, 1914-1918 L'Aisne 1918 AFN 1952-...

 

Vox 党首 サンティアゴ・アバスカル創立 2013年12月17日分離元 国民党(PP)党員・党友数 32.000人(2019年)政治的思想 スペイン主義(英語版)右派ポピュリズム社会保守主義経済的自由主義[1]国民保守主義欧州懐疑主義[2]反イスラーム主義[3]君主主義[4]カトリック伝統主義[5]政治的立場 右派[6][7] - 極右[8][9][10]欧州連...

Scientific discipline devoted to the study of protists This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Protistology – news · newspapers · books · scholar · JSTOR (February 2013) (Learn how and when to remove this message) Part of a series onBiologyScience of life Index Outline Glossary History (timeline) Key...

 

2003 Romanian constitutional referendum 18–19 October 2003 Do you agree with the law on the revision of the Romanian Constitution in the form adopted by the Parliament[1]Results Choice Votes % Yes 8,915,022 91.06% No 875,172 8.94% Valid votes 9,790,194 98.51% Invalid or blank votes 148,247 1.49% Total votes 9,938,441 100.00% Registered voters/turnout 17,842,103 55.7% Yes vote by county, including sectors of Bucharest and the diaspora.Politics of Romania Constitution Referendums 199...

 

Peta menunjukan lokasi Bauko Data sensus penduduk di Bauko Tahun Populasi Persentase 199524.242—200027.7292.93%200729.3820.80% Bauko adalah munisipalitas yang terletak di provinsi Bulubundukin, Filipina. Pada tahun 2007, munisipalitas ini memiliki populasi sebesar 30.149 jiwa atau 5.332 rumah tangga. Pembagian wilayah Bauko terbagi menjadi 22 barangay, yaitu: Abatan Bagnen Oriente Bagnen Proper Balintaugan Banao Bila Guinzadan Central Guinzadan Norte Guinzadan Sur Lagawa Leseb Mabaay Mayag ...

Disambiguazione – Se stai cercando il quartiere di Padova di nome Madonna Pellegrina, vedi Padova. Lapide commemorativa della Peregrinatio Mariae di Oropa La Madonna pellegrina o Peregrinatio Mariae è la tradizione cattolica di traslare un'effigie mariana lungo un itinerario che tocca le varie località di una diocesi o di un territorio più ampio, a volte rappresentato da un intero paese, a volte esteso oltre gli stessi confini nazionali. La consuetudine possiede per i credenti un signif...

 

Lokasi Danau-Danau Toshka dan Danau Nasser di Mesir. Danau-danau Toshka adalah nama yang diberikan kepada danau-danau endorheik yang baru terbentuk di Gurun Sahara, Mesir. Bendungan Tinggi Aswan yang dibangun oleh Mesir pada tahun 1964-1968, menghasilkan Danau Nasser dengan ketinggian air maksimal 183 meter di atas permukaan laut. Pada tahun 1978 Mesir membangun kanal Sadat barat laut dari danau Nasser melalui Wadi Toshka guna membiarkan ketinggian air di atas 178 meter untuk dialirkan ke seb...

 

Pour les articles homonymes, voir Samson et Dalila (homonymie). Samson et Dalila Données clés Titre original Samson and Delilah Réalisation Cecil B. DeMille Scénario Frederic M. FrankVladimir JabotinskyHarold Lamb (en)Jesse Lasky Jr. Acteurs principaux Hedy LamarrVictor Mature Pays de production États-Unis Genre Péplum Durée 131 minutes Sortie 1949 Pour plus de détails, voir Fiche technique et Distribution. modifier Victor Mature et Hedy Lamarr Victor Mature et Hedy Lamarr incar...

Palacio de Santa Cruz Bien de Interés Cultural11 de febrero de 1955 RI-51-0001248 Fachada del Palacio de Santa Cruz en la plaza del mismo nombreLocalizaciónPaís España EspañaComunidad Castilla y León Castilla y LeónUbicación  ValladolidCoordenadas 41°39′06″N 4°43′13″O / 41.651547, -4.720145Información generalUsos PalacioEstilo RenacentistaInicio 1486Finalización 1491Construcción 1486Propietario Universidad de ValladolidDiseño y construcció...

 

Vulnerability to the effects of climate change World gross national income per capita: Lower income countries tend to have a higher vulnerability to climate change. Climate change vulnerability is a concept that describes how strongly people or ecosystems are likely to be affected by climate change. Its formal definition is the propensity or predisposition to be adversely affected by climate change. It can apply to humans and also to natural systems (or ecosystems).[1]: 12&#...