In animal models of obesity and diabetes SRT1720 was found to improve insulin sensitivity and lower plasma glucose levels in fat, muscle and liver tissue, and increase mitochondrial and metabolic function.[1] In mice rendered obese and diabetic by feeding a high-fat, high-sugar diet, a study performed at the National Institute of Aging found that feeding chow infused with the highest dose of SRT1720 beginning at one year of age increased mean lifespan by 18%, and maximum lifespan by 5%, as compared to other short-lived obese, diabetic mice; however, treated animals still lived substantially shorter lives than normal-weight mice fed normal chow with no drug.[2] In a later study, SRT1720 increased mean lifespan of obese, diabetic mice by 21.7%, similar to the earlier study, but there was no effect on maximum lifespan in this study.[3] In normal-weight mice fed a standard rodent diet, SRT1720 increased mean lifespan by just 8.8%, and again had no effect on maximum lifespan.[3]
Since the discovery of SRT1720, the claim that this compound is a SIRT1 activator has been questioned[4][5][6]
and further defended.[7][8]
Although SRT1720 is not currently undergoing clinical development, a related compound, SRT2104, reached Phase II human trials for metabolic diseases.[9]
^Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, Wang M (December 2009). "Resveratrol is not a direct activator of SIRT1 enzyme activity". Chemical Biology & Drug Design. 74 (6): 619–24. doi:10.1111/j.1747-0285.2009.00901.x. PMID19843076. S2CID205913187.
^Zarse K, Schmeisser S, Birringer M, Falk E, Schmoll D, Ristow M (November 2010). "Differential effects of resveratrol and SRT1720 on lifespan of adult Caenorhabditis elegans". Hormone and Metabolic Research. 42 (12): 837–9. doi:10.1055/s-0030-1265225. PMID20925017. S2CID260168892.
^Thevis M, Schänzer W (March 2016). "Emerging drugs affecting skeletal muscle function and mitochondrial biogenesis - Potential implications for sports drug testing programs". Rapid Communications in Mass Spectrometry. 30 (5): 635–51. Bibcode:2016RCMS...30..635T. doi:10.1002/rcm.7470. PMID26842585. S2CID206444739.