Panorama of the Rotzo area with several of the Outcrops visible: Tonezza mountain at the left, Val d´Assa cliff in the center-front and Campolongo mountain in the right
The Rotzo Formation (also known in older literature as the Noriglio Grey Limestone Formation) is a geological formation in Italy, dating to roughly between 192 and 186 million years ago and covering the Pliensbachianstage of the Jurassic Period in the Mesozoic Era.[4] Has been traditionally classified as a Sinemurian-Pliensbachian Formation, but a large and detailed dataset of isotopic 13C and 87Sr/86Sr data, estimated the Rotzo Formation to span only over the Early Pliensbachian, bracketed between the Jamesoni-Davoei biozones, marked in the Loppio Oolitic Limestone–Rotzo Fm contact by a carbon isotope excursion onset similar to the Sinemu-Pliens boundary event, while the other sequences fit with the a warm phase that lasts until the Davoei biozone.[1] The Rotzo Formation represented the Carbonate Platform, being located over the Trento Platform and surrounded by the Massone Oolite (marginal calcarenitic bodies), the Fanes Piccola Encrinite (condensed deposits and emerged lands), the Lombadian BasinMedolo Group and Belluno BasinSoverzene Formation (open marine), and finally towards the south, deep water deposits of the Adriatic Basin.[5] The Pliensbachian Podpeč Limestone of Slovenia, the Aganane Formation & the Calcaires du Bou Dahar of Morocco represent regional equivalents, both in deposition and faunal content.
Fossil prosauropod tracks have been reported from the formation.[6] This formation was deposited within a tropical lagoon environment, similar to modern Bahamas which was protected by oolitic shoals and bars from the open deep sea located to the east (Belluno Basin) and towards the west (Lombardia Basin). It is characterized by a rich paleontological content. It is notable mostly thanks to its great amount of big aberrant bivalves, among which is the genus Lithiotis, described in the second half of the nineteenth century. The unusual shape of Lithiotis and Cochlearites shells, extremely elongated and narrow, characterized by a spoon-like body space placed in a high position, rarely preserved, seems to suggest their adaptation to soft and muddy bottoms with a high sedimentation rate.[7] The Bellori outcrop displays about 20 m of limestones with intercalated clays and marls rich in organic matter and sometimes fossil wood (coal) and amber. The limestones are well stratified, with beds 10 cm to more than one metre thick, whereas the clayey levels range between 3 and 40 cm in thickness.[8][9]
Paleoenvironment
The sedimentary cover of the Southern Alps has been recognized as a well-preserved section of the Mesozoic Tethys' southern continental margin, featuring a horst and graben structure linked to the rifting associated with the opening of the central North Atlantic that in the Late Triassic and Early Jurassic, created elevated blocks separated by troughs. While the western margin (Piedmont and Lombardy) quickly submerged in the Early Jurassic (As seen by the Saltrio Formation & Moltrasio Formation), the eastern regions maintained shallow water sedimentation, including the Friuli and Trento Platforms, this last one latter evolving into a pelagic plateau, and separated from the Lombardian basin by the Garda escarpment fault system.[10]
The Early Jurassic Calcari Grigi Group represents the shallow-water sedimentation phase of the Trento Platform, revealing several sites over an area of about 1,500 km2. The continuity of dinosaur tracks from the Hettangian-Pliensbachian interval indicates a stable connection between the Southern Alps' carbonate tidal flats and nearby vegetated lands and freshwater sources, although the exact locations of these lands remain uncertain.[11] Detailed sedimentological studies of the Calcari Grigi Group, particularly the Rotzo Formation, describe it as a shallow subtidal platform with an inner lagoon bordered by oolitic shoals.[8]
The Coste dell’Anglone ichnosite for example, situated on the margin of this lagoon within a sandy barrier complex, was influenced by pioneer plants like Hirmeriellaceae in semi-arid conditions. Sedimentary structures indicate a shallow water tidal environment with heterolithic stratification pointing to steady flows at low current velocities. The presence of dinosaur tracks and supratidal markers suggests repeated subaerial exposure, contrasting with previous interpretations of the site as fully subtidal.[11][12]
These findings align with the lagoon-barrier island complex scenario, featuring a subtidal ramp gently inclined to the west and an intertidal-supratidal barrier island complex trending approximately N-S, now corresponding to the Mt. Brento-Biaina and Mt. Baldo chains.[5][11]
Amoebae
The presence of the families Centropyxidae and Difflugiidae testifies the presence of a mixed marine-terrestrial depositional system, lacking large bodies of water.[13]
Microfossils of the Rotzo Formation consist of benthic foraminifera, calcareous algae, Ostracoda and coprolites. Foraminifera are mainly benthic agglutinated species belonging to the superfamily Lituolacea (suborder Textulariina), while lamellar and porcellaneous-walled species are very rare.[21] The bivalve Opisoma excavatum is very common.[22]
A Chaetetidan Demosponge, member of Chaetetinae. Monospecific assamblages with encrusting and symbiont forms are found abundantly on lagoonal facies, distributed in several stratigraphic horizons.
A Terebratulidan brachiopoda, member of Plectoconchidae. Typical Mediterranean region taxon in the Pliensbachian, the main Branchiopod locally associated with the Lithiotids facies, where they formed rare mass occurrences at discrete intervals.
A spiriferidan brachiopoda, member of Spiriferinidae. Typical Mediterranean region taxon in the Pliensbachian
Bivalves
The Rotzo Formation is known mostly due to its massive bivalve associations of the genera Lithiotis, Cochlearites and Lithioperna that extended all along the Pliensbachian Trento Platform forming mass accumulations of specimens that formed Reef-Like structures.[28] This fauna appeared after the early Pliensbachian C-cycle perturbation, that triggered the diffusion of the Lithiotis Fauna, noted on the rapid widespread of this biota after the event layers.[28] All of the genera related with this fauna appeared on the lower Jurassic, and all but one became extinct before the Middle Jurassic.[18] This "Reefs" had a strong zonation, starting with the bivalves Gervilleioperna and Mytiloperna, restricted to intertidal and shallow-subtidal facies. Lithioperna is limited to lagoonal subtidal facies and even in some low-oxygen environments. Finally Lithiotis and Cochlearites are found in subtidal facies, constructing buildups.[18] This sections formed various kinds of ecosystems on the Trento platform, where it appeared in branched corals filled with (Spongiomorpha), Domal corals (Stromatoporida), tubular corals, Styllophyllidae corals, unidentified Cerioidea colonial corals, regular echinoid debris, sponges, and the solitary coral Opelismilia sp., with also aggregated snail shells.[18]
An oyster, member of Plicatostylidae inside Ostreida. A large bivalve, with a subequivalved shell, up to 60–70 cm high. It is one of the Three main bivalves recovered on the Lithiotis Facies, with its accumulations generally overlying megalodontid coquinas.[31]
A clam, member of Neomiodontidae inside Veneroidei. The so-called Eomiodon horizon represents the lower Rotzo Formation, composed of organic-rich marlstones with abundant specimens of this genus, typical of stressed environment with low salinity.[30] This genus considered an opportunistic shallow infaunal suspension feeder, and the marker genus for brackish environments.[33]
An oyster, member of Plicatostylidae inside Ostreida. On the Rotzo formation this genus become abundant along rootlets, indicative of a very shallow and restricted lagoon or marsh environment.[31]
An oyster, member of Plicatostylidae inside Ostreida. This genus was found to be a bivalve with a byssate juvenile stage that developed different modes of life on the adulthood depending on the individual density and bottom firmness.[32]
An oyster, member of Plicatostylidae inside Ostreida. It is the major Bivalve identified on the formation, and the genus that gives the name to the Lithiotis fauna.[31] Large, large and aberrant bivalves present on mostly of the Trento Platform.[32] Its accumulation have had different denominations on literature, such as banks, bioherms, biostromes, bivalve reefs or bivalve mounds.[31]
A clam, member of Astartidae inside Carditida. Is considered a genus that evolved from shallow burrowing ancestors, becoming a secondarily semi-infaunal edgewise recliner adapted to photosymbiosis.[22]
An EmiratiidaePhymosomatoidan. This Echinoids are recovered from a marginal marine layer, with abundant bivalves, gastropods, small corals, often found in concentrations due to tempestites.[41]
An ErymidDecapodan Crustacean. With a rostrum about 1.3 cm long and the cephalic part of carapace about 2.5 cm the specimen
probably reached a total length between 9–10 cm, being one of the largest specimens belonging to this species. Frequent association with Thalassinoides burrows.[42][43]
An Ostracodan of the family Limnocytherinae inside Cytheracea. High probability to be a new species of Limnocythere since the authors know of no other with similar posterolateral sulcation.[44]
An Ostracodan of the family Cytherideidae inside Cytheracea. The assemblage is dominated (>95%) by this taxon.[44] It is a rather Medium-sized Ostracodan and markedly sexually dimorphic (males more elongate and more subrectangular versus shorter, more inflated and more subtriangular females).[44] it is likely that the palaeoenvironment was somewhat "stressed" and probably influenced by Salinity, where this genus would adapt better that Other Ostracodans (is related to the modern euryhaline species, Cyprideis torosa).[44]
A polychaete of the family Dorvilleidae. Unlike the modern counterparts that live in deeper environments, this species is found linked with shallow marine facies
Ichnofossils
In the Western Venetian Prealps a shallow-water, oceanic carbonate platform system, the Trento platform, developed on the Early Jurassic, producing a large succession of massive to well-bedded white Limestones, several 100 m (330 ft) thick that are part of the Calcari Grigi Group, where the Rotzo Formation is the Upper Member.[46] On the local limestone of the Rotzo Formation deep burrowing is a very common type of biogenic activity, as is shown due to the presence of a large characteristic network of burrows which reach down to the lagoonal, marly-clayey assigned strata, suggesting intense bioturbation by large unknown organisms, perhaps giant decapod crustaceans (Probably members of the family Erymidae), although, the burrows found are not closely related to the ones of Shrimps or other decapods, but resemble those of Stomatopoda and Malacostraca.[46] Other includes abandoned burrows, vertical biogenic action and infilling on the sea substrate.[46]
An ichnogenus that represents the resting trace resting activity of sea stars (Asteroidea) and brittle stars (Ophiuroidea).[47] The recovered from the Rotzo formation are probably from specimens trapped on tidal changes.[47]
It is difficult to suggest this ichnogenus because on the Formation the vertical and lined burrow with a deep central crater typical of Chomatichnus is never preserved.[46] It resemble described burrows of endobenthic thalassinidean decapods, specially Callianassa subterranea of modern North Sea, Callianassa major, Callianassa californensis or Upogebia pugettensis.[46] It can be also SerpulidaePolychaetan burrows.
In the Rotzo FormationOphiomorpha irregulaire local specimens the walls are extensively reworked by small, secondary burrowers assigned to the ichnogenus Chondrites.[42] Interpreted as the feeding burrow of a sediment-ingesting animal.
Infilled abandoned burrows by coarse-grained skeletal debris
On the local waters during the Lower Jurassic, water motion due to the hurricane action truncated many mounds causing changes on the deposition on the sea-floor and inducing various phases of substrate infillings with carbonate mud, fine-to coarse-grained skeletal debris and fecal pellets.[46] They are assigned to Priapulida, Serpulidae, Siboglinidae, Sabellidae or even Oweniidae.
Two major types of Ophiomorpha where recovered, a smaller one from 2–4 cm in size and the larger one from 5–15 cm in diameter.[48] They are complex burrow systems lined with pelletoidal sediments generally infilled by coarse-grained detritus.[43] Specimens Seems partly destroyed by weathering.[42]
Infilled abandoned burrows by coarse-grained skeletal debris
Ichnofossils done by organisms advancing along the bottom surface. Very narrow, vertical or subvertical, slightly winding unlined shafts filled with mud. Locally, post hurricane burrows
are found in fine-grained tempestite beds and muddy layers and they are Domichnia, Fodinichnia and Chemichnia.[46]
Thalassinoides suevicus has been found on mostly of the middle-upper part of the Rotzo Formation associated with muddy deposits. It ranges from 2–5 cm to 6–10 cm and the larger ones from 10 to 16 cm.[43] Y-shaped tunnels that seen in cross-section reveal circular walls made of pelletoidal grainstone, being more probably a fodichnia of a burrowing animal.[48] A few ichnofossils include simple cylindrical tubes up to 80 cm in length, that resemble crustacean described in Seychelles.[48]
Vertebrata
Chondrichthyes
Episodic surficial bioturbation is common on the Rotzo Formation, due to invertebrates or fishes which alter intensely but rapidly the substrate for many cm in depth.[46] It this case the Bioturbation is assigned to mollusc predatory Chondrichthyes, such as Hybodontidae and Heterodontidae.[46] It also resembles present day flat angel sharks or Squatinidae and Guitarfish such as Rhinobatos.[46]
A ThalattosuchianMesoeucrocodylian. It was cited the presence of fragmentary and poorly preserved remains of “Teleosauridae?”. The fossils were found on lagoonal deposits.[51]
Dinosaurs
On the Inter-supratidal levels show that on the Rotzo Formation the Tracksites were rarely hit by Storm Waves.[54] Bella Lastra Tracksite recovers this environment, where the shales present (Where Fish & Crocodrylomorph Remains where found) are filled with plant roots, pollen grains, spores, freshwater ostracodes and the bivalve Eomiodon.[54] This was deposited mostly on a Lagoonar environment with abundant shed vegetation.[54] The main local Track record recovers specially Theropoda and Sauropoda, where the Sauropods are the most abundant tracks present (70%), moving the Otozum-like Sauropodomorphs of lower levels, with the climate changing from arid to humid.[54] The Coste dell’Anglone ichnosite is considered as derived from semi-arid tidal flat deposits, due to the abundance of Cheirolepidiaceae Pollen.[12] As the Pliensbachian Trento Platform is considered to be formed by a channelized barrier formed by sand, with reiterate tide emersions. The dinosaurs living here probably trampled on the subtidal flats looking for fishes trapped on tidal-derived ponds.[12]
Theropod tracks, member of the ichnofamily Eubrontidae, incertae sedis inside Neotheropoda. Includes Kayentapus sp. assigned to Sinosaurus-alike Theropods, but on the Rotzo Formation include also Abelisauroid-like tracks, similar to the foot of the genus Velocisaurus.[51] The tracks measure 30 cm long and have a distinctive robust digit III.[54] The Coste dell´Anglone tracksite had a pes with the metatarsal III elongated, as found on Dilophosaurus.[12]
Thyreophoran tracks, type member of the ichnofamily Moyenisauropodidae, incertae sedis inside Neornithischia. Is considered by some authors synonymous with the ichnogenus Anomoepus. The tracks adscribed share some morphological affinity with those referred to the Ankylosauridae, such as the ichnogenera Metatetrapodus and Tetrapodosaurus, and probably belonged to medium-sized Scelidosaurs or other kind of Thyreophorans. Include Specimens of up to 30 cm, suggesting +4 m long scelidosauroids.[57]
Sauropodomorph tracks, member of the ichnofamily Otozoidae, incertae sedis inside Sauropodomorpha. A single trackway that strongly differs from the others found on the same tracksite. It wears morphological and morphometrical appearance that suggests relationships with a prosauropod trackmaker.[57]
Sauropod tracks, type member of the ichnofamily Parabrontopodidae, incertae sedis inside Sauropodomorpha. Tracks from large basal members of Sauropoda. The larger tracks comprise elliptic pes (L=70 cm; W=50 cm) and subcirluar manus prints (L=33 cm; W=30 cm), what are among the largest known dinosaur tracks of the lower jurassic.[54] While nearly destroyed, the Tracks resemble the foot of the genus Barapasaurus. There is a type B of Parabrontopodus slightly smaller that resemble the genus Vulcanodon.
Flora
Rotzo Formation nearby land hosted Bahamian-type biomes (Gold Rock Beach in the picture) with nearby "Taxodium swamp"-like coniferous associations dominated by the Pagiophyllum producer
The Rotzo Formation was deposited on a Lagoon on the emerged Trento Platform, leading to a well preserved fossil flora record, collected and studied since the 19th century.[59] The great level of floral fossilization has even allow to discovery fossil amber on the Bellori section. This amber has allowed to determine that the environment was a shallow tropical lagoon, only a few metres deep, closed seawards by oolitic shoals and bars.[59] This levels are dominated by a high abundance of Classopollis sp. (Cheirolepidiaceae), associated with dry and wet climates in coastal areas. The abundance of this group of conifers is also proven by the high presence of cuticles of Pagiophyllum cf. rotzoanum.[60] Beyond this genera, spores are highly diversified, including from Sphenophyta, Selaginellales to Ferns, with abundance (more than 50%) of trilete spores (Deltoidospora), what suggest a good freshwater availability corresponding to a wet climate, proven also by the presence of aquatic miospores of algae such as Botryococcus and Pseudoschizaea.[59] The climate was arid on some seasons with monsoon months. The abundance of marine fauna on this sediments, including fragments of corals, bryozoans, bivalves, echinoids, and foraminifera, suggest transport from brackish lagoons and marshes, probably occurred during storm events.[59] Overall data points to a marshy and/or submerged paleoenvironment, comparable to the present-day Taxodium swamp or cypress swamp and a Bahamian-type marine environment in a rather wet monsoonal climate as in the modern southeastern Asia.[59][60]
Amber
The Rotzo Formation records one of the few Early Jurassic assamblages with Amber in the world, the nicknamed "Bellori amber" found near the village of the same name.[61] Made mostly of small droplets of less than 1 mm with exceptionally preserved morphology its likely the amber producing plants were likely not stressed or affected by disease.[61] Due to the small size animal inclusion have not been found. However various plant materials, identified “mummified wood” and wood tissue are known.[61] Additionally large amounts of CircumpollesCheirolepidiaceous pollen, and occasional freshwater algae Pseudoschizaea remains are included.[61] Several cuticle fragments are attributed to the araucariaceous or Hirmeriellaceae genus Pagiophyllum.[61] Those lived on a coastal and wet palaeoenvironment similar to the present-day Taxodium swamps with monsoonal seasons as in the modern southern Asia.[61]
Affinities with Equisetaceae. Related to humid environments, the stems of local Equisetopsids show a rather large grown cycle, like the Bamboo on the modern Southern Asia, implicating tall Plants influenced by a Tropical Climate.
Affinities with Corystospermaceae inside Corystospermales. On the Roverè di Velo collection, C. brauniana is the most common Frond found. The Fronds belong to medium to large arboreal Ferns.
Affinities with Corystospermaceae inside Corystospermales.. Represents the largest "Seed Fern" Leaf in the fossil record, with leaves up to 70 cm, having an habit resembling the extant angiosperm Nypa fruticans.[72]
Affinities with Caytoniaceae inside Caytoniales. There is a superficial doubt with the assignation to S. goeppertiana, and due to that Roverè di Velo specimen may be confirmed by comparing them with original Zigno's Material.
Affinities with Williamsoniaceae inside Bennettitales. Overall, the genus Otozamites is among the most abundant flora genus recovered on some of the levels of the Rotzo Formation, and also one of the most diversified. It belongs to arbustive Bennetites.
Affinities with Williamsoniaceae inside Bennettitales. This genus has been related with the more arboreal family Williamsoniaceae, although is more probably from a low arboreal to arbustive Bennetite.
Affinities with Williamsoniaceae inside Bennettitales. Was previously ascribed by Guiscardi (Director of the Geology Department of the Napoles University between 1861 al 1885) to Pachypteris visianica and Cycadopteris brauniana.
Affinities with Williamsoniaceae inside Bennettitales. Weltrichia is considered by some authors some kind of Bennetitalean Flower, putting that group on relationships with the Angiosperms.
Incertade sedis inside Bennettitales. This genus has been related with the more arboreal family Williamsoniaceae, although is more probably from a low arboreal to arbustive Bennetite.
Affinities with the genus Trichopitys, as probably a member of Karkeniaceae inside Ginkgoopsida, with strong resemblance with the genus Baiera, lumped in some papers as Baiera lindleyana.
Affinities with Araucariaceae or Cheirolepidiaceae inside Coniferales. Brachyphyllum tropidimorphyrn shows close resemblance between African and Venetian conifers and its distribution suggests a lowland araucarian forest.[76]
A possible Conifer leaf. Was suggested to have affinities with Czekanowskiales, sometimes found inside Ginkgoopsida, yet recent finds of it associated with the cone genera Sphaerostrobus and Ourostrobus points to a coniferophyte affinity, maybe as a member of Palissyaceae.[77]
Affinities with Araucariaceae or Cheirolepidiaceae inside Coniferales. One of the specimens was assigned to Otozamites massalongianus, due to confusing the overlapping appearance and the Otozamites-like shape of the leaves of the apical portion of the main shoot.
Incertae sedis inside Coniferales, initially identified as "Yuccites schimperianus", suggested as a member of its own family, the "Pelourdeaceae". A hygrophytic riparian conifer with herbaceous or shrubby habit. Some specimens are difficult to identify.
Affinities with Palyssiaceae inside Coniferales. Extinct group conifer leaves with similarities with Sequoia or Amentotaxus. Maybe Includes the species "Taxites vicentina".
^Broglio Loriga, C.; Neri, C. (1976). "Aspetti paleobiologici e paleogeografici delle facies "Lithiotis" (Giurese inf.)". Rivista Italiana di Paleontologia e Stratigrafia. 82 (1): 651–151.
^Mietto, P.; Roghi, G.; Zorzin, R. (2000). "Le impronte di dinosauri liassici dei Monti Lessini Veronesi [The Liassic dinosaur tracks from the Veronese Monti Lessini]". Bollettino del Museo Civico di Storia Naturale di Verona. Geologia Paleontologia Preistoria. 24 (2): 55–72.
^Castellarin, A.; Picotti, V. (1990). "Jurassic tectonic framework of the eastern border of the Lombardian basin". Eclogae Geologicae Helvetiae. 83 (3): 683–700.
^ abcdefghGarassino, A.; Monaco, M. (2000). "Burrows and body fossil of decapod custaceans i the Calcari Grigi, Lower Jurassic, Treno Platform (Italy)". Geobios. 34 (3): 291–301.
^ abcdAvanzini, M. (1998). "Resti di vertebrati dal Giurassico inferiore della piattafor-ma di Trento (Italia settentrionale) Nota prelimiare". Studi Trentini diScienze Naturali. Acta Geologica. 73 (7): 75–80.
^Avanzini, M. (1998). "Resti di rettili continentali dal Giurassico inferiore della piattaforma di Trento (Italia settentrionale)". Studi Trentini di Scienze Naturali - Acta Geologica. 73 (4): 75–80.
^ abcdPetti, F.M.; Avanzini, M.; Antonelli, M; Bernardi, M.; Leonardi, G.; Manni, R.; Mietto, P.; Pignatti, J.; Piubelli, D.; Sacco, E.; Wagensommer, A. (2020). "Jurassic tetrapod tracks from Italy: a training ground for generations of researchers". Tetrapod Ichnology in Italy: The State of the Art. Journal of Mediterranean Earth Sciences. 12 (3): 137–165. Retrieved 3 January 2022.
^ abcdefghijklmnopqrstuvwxyzaaWesley, A. (1958). "Contributions to the knowledge of the flora of the Grey Limestones of Veneto, Part 2". Mem. Ist. Geol. Min. Univ. Padova. 21 (1): 1–57.
^ abcdefWesley, A. (1956). "Contributions to the knowledge of the flora of the Grey Limestones of Veneto, Part 1". Mem. Ist. Geol. Min. Univ. Padova. 19 (3): 1–69.
^van Konijnenburg-van Cittert, J.H.A.; Schmeißner, S.; D., G.; Kustatscher, E.; Pott, C. (2024-03-13). "Plant macrofossils from the Rhaetian of Einberg near Coburg (Bavaria, Germany). Part 3. Conifers, incertae sedis and general discussion". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 310 (3): 251–282. doi:10.1127/njgpa/2023/1182. ISSN0077-7749.