Formal power series with coefficients tending to 0
In algebra , the ring of restricted power series is the subring of a formal power series ring that consists of power series whose coefficients approach zero as degree goes to infinity.[ 1] Over a non-archimedean complete field , the ring is also called a Tate algebra . Quotient rings of the ring are used in the study of a formal algebraic space as well as rigid analysis , the latter over non-archimedean complete fields.
Over a discrete topological ring , the ring of restricted power series coincides with a polynomial ring ; thus, in this sense, the notion of "restricted power series" is a generalization of a polynomial .
Definition
Let A be a linearly topologized ring , separated and complete and
{
I
λ λ -->
}
{\displaystyle \{I_{\lambda }\}}
the fundamental system of open ideals. Then the ring of restricted power series is defined as the projective limit of the polynomial rings over
A
/
I
λ λ -->
{\displaystyle A/I_{\lambda }}
:
A
⟨ ⟨ -->
x
1
,
… … -->
,
x
n
⟩ ⟩ -->
=
lim
← ← -->
λ λ -->
-->
A
/
I
λ λ -->
[
x
1
,
… … -->
,
x
n
]
{\displaystyle A\langle x_{1},\dots ,x_{n}\rangle =\varprojlim _{\lambda }A/I_{\lambda }[x_{1},\dots ,x_{n}]}
.[ 2] [ 3]
In other words, it is the completion of the polynomial ring
A
[
x
1
,
… … -->
,
x
n
]
{\displaystyle A[x_{1},\dots ,x_{n}]}
with respect to the filtration
{
I
λ λ -->
[
x
1
,
… … -->
,
x
n
]
}
{\displaystyle \{I_{\lambda }[x_{1},\dots ,x_{n}]\}}
. Sometimes this ring of restricted power series is also denoted by
A
{
x
1
,
… … -->
,
x
n
}
{\displaystyle A\{x_{1},\dots ,x_{n}\}}
.
Clearly, the ring
A
⟨ ⟨ -->
x
1
,
… … -->
,
x
n
⟩ ⟩ -->
{\displaystyle A\langle x_{1},\dots ,x_{n}\rangle }
can be identified with the subring of the formal power series ring
A
[
[
x
1
,
… … -->
,
x
n
]
]
{\displaystyle A[[x_{1},\dots ,x_{n}]]}
that consists of series
∑ ∑ -->
c
α α -->
x
α α -->
{\displaystyle \sum c_{\alpha }x^{\alpha }}
with coefficients
c
α α -->
→ → -->
0
{\displaystyle c_{\alpha }\to 0}
; i.e., each
I
λ λ -->
{\displaystyle I_{\lambda }}
contains all but finitely many coefficients
c
α α -->
{\displaystyle c_{\alpha }}
.
Also, the ring satisfies (and in fact is characterized by) the universal property :[ 4] for (1) each continuous ring homomorphism
A
→ → -->
B
{\displaystyle A\to B}
to a linearly topologized ring
B
{\displaystyle B}
, separated and complete and (2) each elements
b
1
,
… … -->
,
b
n
{\displaystyle b_{1},\dots ,b_{n}}
in
B
{\displaystyle B}
, there exists a unique continuous ring homomorphism
A
⟨ ⟨ -->
x
1
,
… … -->
,
x
n
⟩ ⟩ -->
→ → -->
B
,
x
i
↦ ↦ -->
b
i
{\displaystyle A\langle x_{1},\dots ,x_{n}\rangle \to B,\,x_{i}\mapsto b_{i}}
extending
A
→ → -->
B
{\displaystyle A\to B}
.
Tate algebra
In rigid analysis , when the base ring A is the valuation ring of a complete non-archimedean field
(
K
,
|
⋅ ⋅ -->
|
)
{\displaystyle (K,|\cdot |)}
, the ring of restricted power series tensored with
K
{\displaystyle K}
,
T
n
=
K
⟨ ⟨ -->
ξ ξ -->
1
,
… … -->
ξ ξ -->
n
⟩ ⟩ -->
=
A
⟨ ⟨ -->
ξ ξ -->
1
,
… … -->
,
ξ ξ -->
n
⟩ ⟩ -->
⊗ ⊗ -->
A
K
{\displaystyle T_{n}=K\langle \xi _{1},\dots \xi _{n}\rangle =A\langle \xi _{1},\dots ,\xi _{n}\rangle \otimes _{A}K}
is called a Tate algebra, named for John Tate .[ 5] It is equivalently the subring of formal power series
k
[
[
ξ ξ -->
1
,
… … -->
,
ξ ξ -->
n
]
]
{\displaystyle k[[\xi _{1},\dots ,\xi _{n}]]}
which consists of series convergent on
o
k
¯ ¯ -->
n
{\displaystyle {\mathfrak {o}}_{\overline {k}}^{n}}
, where
o
k
¯ ¯ -->
:=
{
x
∈ ∈ -->
k
¯ ¯ -->
:
|
x
|
≤ ≤ -->
1
}
{\displaystyle {\mathfrak {o}}_{\overline {k}}:=\{x\in {\overline {k}}:|x|\leq 1\}}
is the valuation ring in the algebraic closure
k
¯ ¯ -->
{\displaystyle {\overline {k}}}
.
The maximal spectrum of
T
n
{\displaystyle T_{n}}
is then a rigid-analytic space that models an affine space in rigid geometry .
Define the Gauss norm of
f
=
∑ ∑ -->
a
α α -->
ξ ξ -->
α α -->
{\displaystyle f=\sum a_{\alpha }\xi ^{\alpha }}
in
T
n
{\displaystyle T_{n}}
by
‖ ‖ -->
f
‖ ‖ -->
=
max
α α -->
|
a
α α -->
|
.
{\displaystyle \|f\|=\max _{\alpha }|a_{\alpha }|.}
This makes
T
n
{\displaystyle T_{n}}
a Banach algebra over k ; i.e., a normed algebra that is complete as a metric space . With this norm , any ideal
I
{\displaystyle I}
of
T
n
{\displaystyle T_{n}}
is closed[ 6] and thus, if I is radical, the quotient
T
n
/
I
{\displaystyle T_{n}/I}
is also a (reduced) Banach algebra called an affinoid algebra .
Some key results are:
(Weierstrass division) Let
g
∈ ∈ -->
T
n
{\displaystyle g\in T_{n}}
be a
ξ ξ -->
n
{\displaystyle \xi _{n}}
-distinguished series of order s ; i.e.,
g
=
∑ ∑ -->
ν ν -->
=
0
∞ ∞ -->
g
ν ν -->
ξ ξ -->
n
ν ν -->
{\displaystyle g=\sum _{\nu =0}^{\infty }g_{\nu }\xi _{n}^{\nu }}
where
g
ν ν -->
∈ ∈ -->
T
n
− − -->
1
{\displaystyle g_{\nu }\in T_{n-1}}
,
g
s
{\displaystyle g_{s}}
is a unit element and
|
g
s
|
=
‖ ‖ -->
g
‖ ‖ -->
>
|
g
v
|
{\displaystyle |g_{s}|=\|g\|>|g_{v}|}
for
ν ν -->
>
s
{\displaystyle \nu >s}
.[ 7] Then for each
f
∈ ∈ -->
T
n
{\displaystyle f\in T_{n}}
, there exist a unique
q
∈ ∈ -->
T
n
{\displaystyle q\in T_{n}}
and a unique polynomial
r
∈ ∈ -->
T
n
− − -->
1
[
ξ ξ -->
n
]
{\displaystyle r\in T_{n-1}[\xi _{n}]}
of degree
<
s
{\displaystyle <s}
such that
f
=
q
g
+
r
.
{\displaystyle f=qg+r.}
[ 8]
(Weierstrass preparation ) As above, let
g
{\displaystyle g}
be a
ξ ξ -->
n
{\displaystyle \xi _{n}}
-distinguished series of order s . Then there exist a unique monic polynomial
f
∈ ∈ -->
T
n
− − -->
1
[
ξ ξ -->
n
]
{\displaystyle f\in T_{n-1}[\xi _{n}]}
of degree
s
{\displaystyle s}
and a unit element
u
∈ ∈ -->
T
n
{\displaystyle u\in T_{n}}
such that
g
=
f
u
{\displaystyle g=fu}
.[ 9]
(Noether normalization) If
a
⊂ ⊂ -->
T
n
{\displaystyle {\mathfrak {a}}\subset T_{n}}
is an ideal, then there is a finite homomorphism
T
d
↪ ↪ -->
T
n
/
a
{\displaystyle T_{d}\hookrightarrow T_{n}/{\mathfrak {a}}}
.[ 10]
As consequence of the division, preparation theorems and Noether normalization,
T
n
{\displaystyle T_{n}}
is a Noetherian unique factorization domain of Krull dimension n .[ 11] An analog of Hilbert's Nullstellensatz is valid: the radical of an ideal is the intersection of all maximal ideals containing the ideal (we say the ring is Jacobson).[ 12]
Results
This section
needs expansion . You can help by
adding to it .
(April 2020 )
Results for polynomial rings such as Hensel's lemma , division algorithms (or the theory of Gröbner bases ) are also true for the ring of restricted power series. Throughout the section, let A denote a linearly topologized ring, separated and complete.
(Hensel) Let
m
⊂ ⊂ -->
A
{\displaystyle {\mathfrak {m}}\subset A}
be a maximal ideal and
φ φ -->
:
A
→ → -->
k
:=
A
/
m
{\displaystyle \varphi :A\to k:=A/{\mathfrak {m}}}
the quotient map. Given an
F
{\displaystyle F}
in
A
⟨ ⟨ -->
ξ ξ -->
⟩ ⟩ -->
{\displaystyle A\langle \xi \rangle }
, if
φ φ -->
(
F
)
=
g
h
{\displaystyle \varphi (F)=gh}
for some monic polynomial
g
∈ ∈ -->
k
[
ξ ξ -->
]
{\displaystyle g\in k[\xi ]}
and a restricted power series
h
∈ ∈ -->
k
⟨ ⟨ -->
ξ ξ -->
⟩ ⟩ -->
{\displaystyle h\in k\langle \xi \rangle }
such that
g
,
h
{\displaystyle g,h}
generate the unit ideal of
k
⟨ ⟨ -->
ξ ξ -->
⟩ ⟩ -->
{\displaystyle k\langle \xi \rangle }
, then there exist
G
{\displaystyle G}
in
A
[
ξ ξ -->
]
{\displaystyle A[\xi ]}
and
H
{\displaystyle H}
in
A
⟨ ⟨ -->
ξ ξ -->
⟩ ⟩ -->
{\displaystyle A\langle \xi \rangle }
such that
F
=
G
H
,
φ φ -->
(
G
)
=
g
,
φ φ -->
(
H
)
=
h
{\displaystyle F=GH,\,\varphi (G)=g,\varphi (H)=h}
.[ 13]
Notes
^ Stacks Project, Tag 0AKZ .
^ Grothendieck & Dieudonné 1960 , Ch. 0, § 7.5.1.
^ Bourbaki 2006 , Ch. III, § 4. Definition 2 and Proposition 3.
^ Grothendieck & Dieudonné 1960 , Ch. 0, § 7.5.3.
^ Fujiwara & Kato 2018 , Ch 0, just after Proposition 9.3.
^ Bosch 2014 , § 2.3. Corollary 8
^ Bosch 2014 , § 2.2. Definition 6.
^ Bosch 2014 , § 2.2. Theorem 8.
^ Bosch 2014 , § 2.2. Corollary 9.
^ Bosch 2014 , § 2.2. Corollary 11.
^ Bosch 2014 , § 2.2. Proposition 14, Proposition 15, Proposition 17.
^ Bosch 2014 , § 2.2. Proposition 16.
^ Bourbaki 2006 , Ch. III, § 4. Theorem 1.
References
Bourbaki, N. (2006). Algèbre commutative: Chapitres 1 à 4 . Springer Berlin Heidelberg. ISBN 9783540339373 .
Grothendieck, Alexandre ; Dieudonné, Jean (1960). "Éléments de géométrie algébrique: I. Le langage des schémas" . Publications Mathématiques de l'IHÉS . 4 . doi :10.1007/bf02684778 . MR 0217083 .
Bosch, Siegfried; Güntzer, Ulrich; Remmert, Reinhold (1984), "Chapter 5", Non-archimedean analysis , Springer
Bosch, Siegfried (2014), Lectures on Formal and Rigid Geometry , ISBN 9783319044170
Fujiwara, Kazuhiro; Kato, Fumiharu (2018), Foundations of Rigid Geometry I
See also
External links