In robust statistics, repeated median regression, also known as the repeated median estimator, is a robust linear regression algorithm.
The estimator has a breakdown point of 50%.[1] Although it is equivariant under scaling, or under linear transformations of either its explanatory variable or its response variable, it is not under affine transformations that combine both variables.[1] It can be calculated in time by brute force, in time using more sophisticated techniques,[2] or in randomized expected time.[3] It may also be calculated using an on-line algorithm with update time.[4]
Method
The repeated median method estimates the slope of the regression line for a set of points as
A simpler and faster alternative to estimate the intercept is to use the value just estimated, thus:[5]
Note: The direct and hierarchical methods of estimating give slightly different values, with the hierarchical method normally being the best estimate. This latter hierarchical approach is idential to the method of estimating in Theil–Sen estimator regression.
^Stein, Andrew; Werman, Michael (1992). "Finding the repeated median regression line". Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '92). Philadelphia, PA, USA: Society for Industrial and Applied Mathematics. pp. 409–413. ISBN0-89791-466-X.
^Bernholt, Thorsten; Fried, Roland (2003). "Computing the update of the repeated median regression line in linear time". Information Processing Letters. 88 (3): 111–117. doi:10.1016/s0020-0190(03)00350-8. hdl:2003/5224.