Reciprocal gamma function

Plot of 1/Γ(x) along the real axis
Reciprocal gamma function 1/Γ(z) in the complex plane, plotted using domain coloring.

In mathematics, the reciprocal gamma function is the function

where Γ(z) denotes the gamma function. Since the gamma function is meromorphic and nonzero everywhere in the complex plane, its reciprocal is an entire function. As an entire function, it is of order 1 (meaning that log log |1/Γ(z)| grows no faster than log |z|), but of infinite type (meaning that log |1/Γ(z)| grows faster than any multiple of |z|, since its growth is approximately proportional to |z| log |z| in the left-half plane).

The reciprocal is sometimes used as a starting point for numerical computation of the gamma function, and a few software libraries provide it separately from the regular gamma function.

Karl Weierstrass called the reciprocal gamma function the "factorielle" and used it in his development of the Weierstrass factorization theorem.

Infinite product expansion

Following from the infinite product definitions for the gamma function, due to Euler and Weierstrass respectively, we get the following infinite product expansion for the reciprocal gamma function:

where γ = 0.577216... is the Euler–Mascheroni constant. These expansions are valid for all complex numbers z.

Taylor series

Taylor series expansion around 0 gives:[1]

where γ is the Euler–Mascheroni constant. For n > 2, the coefficient an for the zn term can be computed recursively as[2][3]

where ζ is the Riemann zeta function. An integral representation for these coefficients was recently found by Fekih-Ahmed (2014):[3]

For small values, these give the following values:

Fekih-Ahmed (2014)[3] also gives an approximation for :

where and is the minus-first branch of the Lambert W function.

The Taylor expansion around 1 has the same (but shifted) coefficients, i.e.:

(the reciprocal of Gauss' pi-function).

Asymptotic expansion

As |z| goes to infinity at a constant arg(z) we have:

Contour integral representation

An integral representation due to Hermann Hankel is

where H is the Hankel contour, that is, the path encircling 0 in the positive direction, beginning at and returning to positive infinity with respect for the branch cut along the positive real axis. According to Schmelzer & Trefethen,[4] numerical evaluation of Hankel's integral is the basis of some of the best methods for computing the gamma function.

Integral representations at the positive integers

For positive integers , there is an integral for the reciprocal factorial function given by[5]

Similarly, for any real and such that we have the next integral for the reciprocal gamma function along the real axis in the form of:[6]

where the particular case when provides a corresponding relation for the reciprocal double factorial function,

Integral along the real axis

Integration of the reciprocal gamma function along the positive real axis gives the value

which is known as the Fransén–Robinson constant.

We have the following formula ([7] chapter 9, exercise 100)

See also

References

  1. ^ Weisstein, Eric W. "Gamma function". mathworld.wolfram.com. Retrieved 2021-06-15.
  2. ^ Wrench, J.W. (1968). "Concerning two series for the gamma function". Mathematics of Computation. 22 (103): 617–626. doi:10.1090/S0025-5718-1968-0237078-4. S2CID 121472614. and
    Wrench, J.W. (1973). "Erratum: Concerning two series for the gamma function". Mathematics of Computation. 27 (123): 681–682. doi:10.1090/S0025-5718-1973-0319344-9.
  3. ^ a b c Fekih-Ahmed, L. (2014). "On the power series expansion of the reciprocal gamma function". HAL archives.
  4. ^ Schmelzer, Thomas; Trefethen, Lloyd N. (2007). "Computing the Gamma function using contour integrals and rational approximations". SIAM Journal on Numerical Analysis. 45 (2). Society for Industrial and Applied Mathematics: 558–571. doi:10.1137/050646342.; "Copy on Trefethen's academic website" (PDF). Mathematics, Oxford, UK. Retrieved 2020-08-03.; "Link to two other copies". CiteSeerX 10.1.1.210.299.
  5. ^ Graham, Knuth, and Patashnik (1994). Concrete Mathematics. Addison-Wesley. p. 566.{{cite book}}: CS1 maint: multiple names: authors list (link)
  6. ^ Schmidt, Maxie D. (2019-05-19). "A Short Note on Integral Transformations and Conversion Formulas for Sequence Generating Functions". Axioms. 8 (2): 62. arXiv:1809.03933. doi:10.3390/axioms8020062.
  7. ^ Henri Cohen (2007). Number Theory Volume II: Analytic and Modern Tools. Graduate Texts in Mathematics. Vol. 240. doi:10.1007/978-0-387-49894-2. ISBN 978-0-387-49893-5. ISSN 0072-5285.