Rational consequence relation

In logic, a rational consequence relation is a non-monotonic consequence relation satisfying certain properties listed below.

A rational consequence relation is a logical framework that refines traditional deductive reasoning to better model real-world scenarios. It incorporates rules like reflexivity, left logical equivalence, right-hand weakening, cautious monotony, disjunction on the left-hand side, logical and on the right-hand side, and rational monotony. These rules enable the relation to handle everyday situations more effectively by allowing for non-monotonic reasoning, where conclusions can be drawn based on usual rather than absolute implications. This approach is particularly useful in cases where adding more information can change the outcome, providing a more nuanced understanding than monotone consequence relations.

Properties

A rational consequence relation satisfies:

REF
Reflexivity

and the so-called GabbayMakinson rules:[citation needed]

LLE
Left logical equivalence
RWE
Right-hand weakening
CMO
Cautious monotonicity
DIS
Logical or (i.e. disjunction) on left hand side
AND
Logical and on right hand side
RMO
Rational monotonicity [clarification needed]

Uses

The rational consequence relation is non-monotonic, and the relation is intended to carry the meaning theta usually implies phi or phi usually follows from theta. In this sense it is more useful for modeling some everyday situations than a monotone consequence relation because the latter relation models facts in a more strict boolean fashion—something either follows under all circumstances or it does not.

Example: cake

The statement "If a cake contains sugar then it tastes good" implies under a monotone consequence relation the statement "If a cake contains sugar and soap then it tastes good." Clearly this doesn't match our own understanding of cakes. By asserting "If a cake contains sugar then it usually tastes good" a rational consequence relation allows for a more realistic model of the real world, and certainly it does not automatically follow that "If a cake contains sugar and soap then it usually tastes good."

Note that if we also have the information "If a cake contains sugar then it usually contains butter" then we may legally conclude (under CMO) that "If a cake contains sugar and butter then it usually tastes good.". Equally in the absence of a statement such as "If a cake contains sugar then usually it contains no soap" then we may legally conclude from RMO that "If the cake contains sugar and soap then it usually tastes good."

If this latter conclusion seems ridiculous to you then it is likely that you are subconsciously asserting your own preconceived knowledge about cakes when evaluating the validity of the statement. That is, from your experience you know that cakes that contain soap are likely to taste bad so you add to the system your own knowledge such as "Cakes that contain sugar do not usually contain soap.", even though this knowledge is absent from it. If the conclusion seems silly to you then you might consider replacing the word soap with the word eggs to see if it changes your feelings.

Example: drugs

Consider the sentences:

  • Young people are usually happy
  • Drug abusers are usually not happy
  • Drug abusers are usually young

We may consider it reasonable to conclude:

  • Young drug abusers are usually not happy

This would not be a valid conclusion under a monotonic deduction system (omitting of course the word 'usually'), since the third sentence would contradict the first two. In contrast the conclusion follows immediately using the Gabbay–Makinson rules: applying the rule CMO to the last two sentences yields the result.

Consequences

The following consequences follow from the above rules:

MP
Modus ponens
MP is proved via the rules AND and RWE.
CON
Conditionalisation
CC
Cautious cut
The notion of cautious cut simply encapsulates the operation of conditionalisation, followed by MP. It may seem redundant in this sense, but it is often used in proofs so it is useful to have a name for it to act as a shortcut.
SCL
Supraclassity
SCL is proved trivially via REF and RWE.

Rational consequence relations via atom preferences

Let be a finite language. An atom is a formula of the form (where and ). Notice that there is a unique valuation which makes any given atom true (and conversely each valuation satisfies precisely one atom). Thus an atom can be used to represent a preference about what we believe ought to be true.

Let be the set of all atoms in L. For SL, define .

Let be a sequence of subsets of . For , in SL, let the relation be such that if one of the following holds:

  1. for each
  2. for some and for the least such i, .

Then the relation is a rational consequence relation. This may easily be verified by checking directly that it satisfies the GM-conditions.

The idea behind the sequence of atom sets is that the earlier sets account for the most likely situations such as "young people are usually law abiding" whereas the later sets account for the less likely situations such as "young joyriders are usually not law abiding".

Notes

  1. By the definition of the relation , the relation is unchanged if we replace with , with ... and with . In this way we make each disjoint. Conversely it makes no difference to the rational consequence relation if we add to subsequent atoms from any of the preceding .

The representation theorem

It can be proven that any rational consequence relation on a finite language is representable via a sequence of atom preferences above. That is, for any such rational consequence relation there is a sequence of subsets of such that the associated rational consequence relation is the same relation:

Notes

  1. By the above property of , the representation of a rational consequence relation need not be unique—if the are not disjoint then they can be made so without changing the rational consequence relation and conversely if they are disjoint then each subsequent set can contain any of the atoms of the previous sets without changing the rational consequence relation.

References

  • Hill, Lee C.E. (2002). "A new relationship between Maximum Entropy and the Rational Closure of a Conditional Knowledge Base". University of Manchester. [dead link]
  • D. Makinson (Mar 1994). "General Patterns in Nonmonotonic Reasoning". In D.M. Gabbay and C.J. Hogger and J.A. Robinson (ed.). Deduction Methodologies. Handbook of Logic in Artificial Intelligence and Logic Programming. Vol. 2. Oxford: Oxford University Press. pp. 35–110. ISBN 978-0-19-853746-5.

Read other articles:

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

Thomas Marshall beralih ke halaman ini. Untuk kegunaan lain, lihat Thomas Marshall (disambiguasi). Thomas Riley MarshallThomas Marshall Wakil Presiden Amerika Serikat 28Masa jabatan4 Maret 1913 – 3 Maret 1921 PendahuluJames ShermanPenggantiCalvin Coolidge Informasi pribadiPartai politikPartai DemokratSuami/istriLois Irene Kimsey MarshallPekerjaanPolitikusSunting kotak info • L • B Thomas Riley Marshall lahir di North Manchester, Indiana pada tanggal 14 Maret 1854....

 

KRL BN-Holec ACKRL Holec AC di Stasiun BogorBeroperasiSementara tidak beroperasiPembuatPT INKAWoojin Industrial Systems, Korea SelatanMulai beroperasi2014-2015 (Tidak Beroperasi Sementara) 2015-2020 (Rencana beroperasi di Daop 6 YK) 2021-sekarang (Emergency train Covid 19) 2022-sekarang (Separuh unit KRL ini dijadikan restoran Bogowonto Resto Train)Tahun rehabilitasi2013-2014Jumlah sudah diproduksi24 unit (3 set)Formasi8 kereta per setNomor armadaK3 1 96 03-K3 1 01 03OperatorPT KAI Commuter J...

Artikel ini mengenai Allah dalam istilah Kekristenan di Indonesia dan bukan mengenai Allah, Tuhan dalam Islam. Untuk pemahaman lebih lanjut, lihat artikel Penggunaan Allah bagi umat Kristen Indonesia. Dalam bahasa Ibrani, kata Allah disebut dengan berbagai kata: Adonai, Tuan atau Tuanku atau Allah yang Perkasa El, Allah yang Kuat Elohim, Sang Pencipta yang Maha Kuasa Elyon, Allah yang Maha Tinggi Elohe Yisrael, Allah Israel El Olam, Allah yang Kekal El Roi, Allah yang Melihat El Shaddai, Alla...

 

2014 anime by Yutaka Yamamoto and Shin Itagaki Wake Up, Girls!Cover of first Blu-ray volumeGenreMusic, Slice of Life Anime filmWake Up, Girls! – Seven IdolsDirected byYutaka YamamotoProduced byHiroyuki TanakaSatoshi TanakaMika ShimizuTakashi YoshizawaMasahiro SugasawaShūichi TakashinoSeiji YabashiHitoshi KikuchiYū FujimoriWritten byTouko MachidaMusic byMonaca Satoru Kōsaki StudioOrdetTatsunoko ProductionLicensed byNA: Sentai FilmworksReleasedJanuary 10, ...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Associazione Sportiva L'Aquila. Associazione Sportiva L'AquilaStagione 1938-1939Sport calcio Squadra L'Aquila Allenatore Ernst Guzsik Presidente Vittorio Troiani Serie C5ª Coppa ItaliaPrimo turno eliminatorio StadioStadio XXVIII Ottobre (12 000) 1937-1938 1...

 

Pour les articles homonymes, voir Vendres (homonymie). Port-Vendres Blason Administration Pays France Région Occitanie Département Pyrénées-Orientales Arrondissement Céret Intercommunalité Communauté de communes des Albères, de la Côte Vermeille et de l'Illibéris Maire Mandat Grégory Marty 2020-2026 Code postal 66660 Code commune 66148 Démographie Gentilé Port-Vendrais Populationmunicipale 3 969 hab. (2021 ) Densité 269 hab./km2 Géographie Coordonnées 42° ...

 

Сибирский горный козёл Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКла�...

Italian online magazine RockolEditorGiampiero Di CarloFrequencyOnlineFounderGiampiero Di CarloFirst issue1995; 29 years ago (1995)CompanyRockol.com S.r.l.CountryItalyBased inMilanLanguageItalianWebsitewww.rockol.it Rockol is an Italian online music magazine, founded in 1995. Background The publisher and executive director is Giampiero Di Carlo, author and professor of Economics and Music Industry in the master's degree in Music Communications at the Catholic University of th...

 

Навчально-науковий інститут інноваційних освітніх технологій Західноукраїнського національного університету Герб навчально-наукового інституту інноваційних освітніх технологій ЗУНУ Скорочена назва ННІІОТ ЗУНУ Основні дані Засновано 2013 Заклад Західноукраїнський �...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) حققت الامبراطورية العثمانية خلال 600 سنة في فترة حكمها تقدما كبيرا في العلوم والتكنولوجيا على نطاق واسع ف�...

River in Oklahoma, United StatesPoteau RiverThe Poteau River near Panama, OklahomaLocationCountryUnited StatesStatesArkansas, OklahomaPhysical characteristicsSource  • locationWaldron, Arkansas Mouth  • locationFort Smith, Arkansas[1]Length141 mi (227 km)Discharge  • locationPanama, Oklahoma • average2,253 cu ft/s (63.8 m3/s)[2] Wister Lake and Dam on the Poteau River i...

 

American rock band This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dixie Dregs – news · newspapers · books · scholar · JSTOR (September 2007) (Learn how and when to remove this message) Dixie DregsAllen Sloan (left) and Andy West (center) of Dixie Dregs live in 1999Background informationAlso known as Dixie ...

 

Form of animation A motion comic (or animated comic) is a form of animation combining elements of print comic books and animation. Individual panels are expanded into a full shot while sound effects, voice acting, and animation are added to the original artwork. Text boxes, speech bubbles and the onomatopoeia are typically removed to feature more of the original artwork being animated. Motion comics are often released as short serials covering a story arc of a long running series or animating...

Defunct provincial electoral district in Alberta, Canada Calgary-Fort Alberta electoral district2010 boundariesDefunct provincial electoral districtLegislatureLegislative Assembly of AlbertaDistrict created1996District abolished2017First contested1997Last contested2015 Calgary-Fort was a provincial electoral district in Alberta, Canada, mandated to return a single member to the Legislative Assembly of Alberta using the first past the post method of voting from 1997 to 2019. History The Riding...

 

Fictional character This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Lady Shiva – news · newspapers · books · scholar · JSTOR (August 2020) (Learn how and when to remove this message) Comics character Lady ShivaLady Shiva, as depicted in Birds of Prey (vol. 2) #6 (November 2010). Art by Alina Urusov.Publicati...

 

Aquatic sports competition 11th FINA World ChampionshipsHost cityMontreal, Quebec, CanadaDate(s)July 16–31, 2005Officially opened byAdrienne Clarkson← 2003 Barcelona 2007 Melbourne → 2005 FINA World ChampionshipsDivingIndividual1 mmenwomen3 mmenwomen10 mmenwomenSynchronised3 mmenwomen10 mmenwomenOpen water swimming5 kmmenwomen10 kmmenwomen25 kmmenwomenSwimmingFreestyle50 mmenwomen100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomenBackstroke50 mmenwomen100 mmenwome...

Cámara del capitán en el HMS Surprise (réplica) En náutica, la Cámara (ant. Celda) es cada una de las divisiones hechas a popa de los buques de guerra para el alojamiento de los generales, jefes y oficiales embarcados. (fr. Chambre; ing. Cabin; it. Camera).[1]​ Etimología La Cámara, hay quien afirma que antiguamente se decía Celda. Descripción En los buques mercantes, también es la división hecha a popa que sirve para el alojamiento del capitán, pilotos, médico, pasajeros, ...

 

Cet article est une ébauche concernant un peintre roumain. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Octav BăncilăNaissance 27 janvier 1872 ou 4 février 1872BotoșaniDécès 3 avril 1944BucarestNom de naissance Octav BăncilăNationalité roumaineActivités Peintre, militantFormation Université des arts Georges-EnescoAcadémie des beaux-arts de MunichMaîtres Gheorghe Panaiteanu-Bardasare, Constantin ...