Randy O. Wayne is an associate professor of plant biology at Cornell University.[4] Along with his former colleague Peter K. Hepler, Wayne established the role of calcium in regulating plant growth.[5][6] Their 1985 article Calcium and Plant Development was awarded the "Citation Classic" award from Current Contents magazine.[7] They researched how plant cells sense gravity through pressure,[8][9][10] the water permeability of plant membranes,[11]light microscopy,[12] as well as the effects of calcium on plant development.[7][13] Wayne authored two textbooks, including Plant Cell Biology: From Astronomy to Zoology[14][15] and Light and Video Microscopy.[16]
Attempting to explain photosynthesis and gravitropism, Wayne has developed and promoted a fringe theory of light and gravity based on a concept of "binary photons".[17][18] This concept is inconsistent with relativity and modern physics as a whole.[19]
Wayne joined the faculty at Cornell University in 1987. He is a member of the CALS School of Integrative Plant Science.[20] He has a deep interest in teaching science [21] and teaches Plant Cell Biology and Light and Video Microscopy. He has taught a course for nonmajors entitled, Biological Principles [22][23] and subsequently taught a course for nonmajors entitled, Light and Life.[24] Wayne also has strong views on the meaning of a college education.[25] Wayne is a member of the Biology and Society major,[26] which is designed for students who wish to combine training in biology with perspectives from the social sciences and humanities to understand the scientific, social, political, and ethical aspects of modern biology.
Fern spore germination
When it was generally assumed that fern spores contained all the ions necessary for germination,[27] Wayne, working with Peter K. Hepler, showed that external calcium ions were necessary for the red light-stimulated, phytochrome-mediated signal transduction chain that leads to the germination response of the spores of Onoclea sensibilis.[28][29][30]
Water permeability of plant cell membranes
It was generally considered that water moved in and out of the plant cell through the lipid bilayer. Wayne, working with Masashi Tazawa,[31] presented most of the now classical arguments favoring membrane water channels and clearly demonstrated their major contribution to osmotic water transport.[32] Wayne's work preceded the molecular identification of aquaporins in plant cells.[33][34][35]
Gravity sensing in plant cells
It is generally believed that the sedimentation of starch-containing plastids, known as amyloplasts, is responsible for gravity-sensing in plant cells.[36] However, based on the facts that plant cells that do not contain sedimenting amyloplasts still sense gravity[37][38][39][40] and that starchless mutants in higher plants are almost as sensitive to gravity as the wild-type plants,[41][42] Wayne, working with Mark P. Staves and A. Carl Leopold proposed that the amyloplasts do not act as gravity sensors, but as a ballast to enhance the gravitational pressure sensed by proteins at the plasma membrane–extracellular matrix junction.[43][44][45]
Books
Plant Cell Biology: From Astronomy to Zoology, 2009, Elsevier/Academic Press. (ISBN9780123742339)
Plant Cell Biology: From Astronomy to Zoology, Second Edition, 2019, Elsevier/Academic Press. (ISBN9780128143711)
Light and Video Microscopy, 2009, Elsevier/Academic Press. (ISBN9780080921280)
Light and Video Microscopy, Second Edition, 2014, Elsevier/Academic Press. (ISBN9780124114845)
Light and Video Microscopy, Third Edition, 2019, Elsevier/Academic Press. (ISBN9780128165010)
Podcasts
Mann Library Book Talk Plant Cell Biology: From Astronomy to Zoology[46]
Mann Library Book Talk Light and Video Microscopy[47]
^ ab"Randy O Wayne (faculty biography)". Cornell University Department of Plant Biology. 2012-06-28. Retrieved 2012-06-28. Bachelor's Degree Univ Massachusetts 1977 Master's Degree University of California Los Angeles 1979 Doctorate Univ Massachusetts 1985
^V. Raghavan (1989). "Developmental Biology of Fern Gametophytes". Cambridge University Press. ISBN978-0-521-33022-0. Retrieved 2012-06-28. Direct demonstration of an increased Ca2+ influx in the spore following exposure to a saturating dose of red light has been possible by atomic absorption spectroscopy (Wayne and Hepler, 1985a).
^"A Basic Distinction (in the Breakthroughs Section)". Discover Magazine. November 1992. Volume 13, Number 11
^ ab"This Week's Citation Classic"(PDF). Current Contents. July 26, 1993. Retrieved 2012-06-28. The SCI® indicates that this paper has been cited in more than 405 publications -- Hepler P K & Wayne R O. Calcium and plant development. Annu. Rev. Plant Physiol. 36:397-439. 1985. -- Department of Botany, University of Massachusetts. Amherst. MA
^Boyce Rensberger (July 13, 1992). "Getting to the Root Of Plant Growth; How Seeds Sprout in the Proper Direction". Washington Post.
^Elison B. Blancaflor and Patrick H. Masson (December 2003). "Update on Tropisms: Plant Gravitropism. Unraveling the Ups and Downs of a Complex Process". Plant Physiology. pp. 1677–1690. Retrieved 2012-06-28. Vol. 133 Citing this article: Staves MP, Wayne R, Leopold AC (1997) The effect of external medium on the gravitropic curvature of rice (Oryza sativa, Poaceae) roots. Am J Bot 84:1522–1529
^Christophe Maurel (June 1997). "Aquaporins and Water Permeability of Plant Membranes". Annual Review of Plant Physiology and Plant Molecular Biology. 48: 399–429. doi:10.1146/annurev.arplant.48.1.399. PMID15012269. Vol. 48: 399-429; DOI: 10.1146/annurev.arplant.48.1.399
^Plant cell biology. From astronomy to zoology, R Wayne, 2009, Elsevier/Academic Press. Reviewer: Nigel Chaffey, 2010, Plant cell biology. From astronomy to zoology (textbook review), Retrieved Aug. 26, 2014, "...Plant cell biology is an idiosyncratic text and permeated throughout with Wayne's own humour and take on the subject..."
^Carol Bayles (April 2010). "Let There be Light (review of Randy Wayne's book Light and Video Microscopy)". BioScience. Retrieved 2012-06-28. Volume 60 No. 4 BioScience ...excellent undergraduate level text on optical microscopy for biologists... also valuable to anyone using a light microscope ... An ability to elucidate difficult concepts is not the only thing that makes Wayne an excellent teacher. He is also a historian of science and has thoroughly researched the topic in order to bring historical information to the reader.
^Wayne, Randy and Tazawa, Masashi (1990). "Nature of the Water Channels in the Internodal Cells of Nitellopsis". Journal of Membrane Biology. 116 (1): 31–39. doi:10.1007/bf01871669. PMID2165174. S2CID15863712.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Maurel, Christophe (1997). "Aquaporins and Water Permeability of Plant Membranes". Annual Review of Plant Physiology and Plant Molecular Biology. 48: 399–429. doi:10.1146/annurev.arplant.48.1.399. PMID15012269.
^Kaldenhoff, R., Bertl, A., Otto, B., Moshelion, M. and Uehlein, N. (2007). "Characterization of Plant Aquaporins". Osmosensing and Osmosignaling. Methods in Enzymology. Vol. 428. pp. 505–31. doi:10.1016/S0076-6879(07)28028-0. ISBN9780123739216. PMID17875436.{{cite book}}: CS1 maint: multiple names: authors list (link)
^Wayne, Randy, Staves, Mark P. and Leopold, A. Carl (1995). "Detection of Gravity-Induced Polarity of Cytoplasmic Streaming in Chara". Protoplasma. 188 (1–2): 38–48. doi:10.1007/BF01276794. PMID11539183. S2CID14988993.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Wayne, Randy and Staves, Mark P. (1996). "A Down-to-Earth Model of Gravisensing or Newton's Law of Gravitation from the Apple's Perspective". Physiologia Plantarum. 98 (4): 917–921. doi:10.1111/j.1399-3054.1996.tb06703.x. PMID11539338.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Wayne, Randy, Staves, Mark P. and Leopold, A. Carl (1997). "The Effect of the External Medium on the Gravity-Induced Polarity of Cytoplasmic Streaming in Chara corallina (Characeae)". American Journal of Botany. 84 (11): 1516–1521. doi:10.2307/2446612. JSTOR2446612. PMID11541058.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Casper, Timothy and Pickard, Barbara G. (1989). "Gravitropism in a Starchless Mutant of Arabidopsis: Implications for the Starch-Statolith Theory of Gravity Sensing". Planta. 177 (2): 185–197. doi:10.1007/BF00392807. PMID24212341. S2CID3703387.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Weise, Sean E. and Kiss, John H. (1999). "Gravitropism of Influorescence Stems in Starch-Deficient Mutants of Arabidopsis". International Journal of Plant Sciences. 160 (3): 521–527. doi:10.1086/314142. PMID11542271. S2CID21480340.{{cite journal}}: CS1 maint: multiple names: authors list (link)