Random sequence

The concept of a random sequence is essential in probability theory and statistics. The concept generally relies on the notion of a sequence of random variables and many statistical discussions begin with the words "let X1,...,Xn be independent random variables...". Yet as D. H. Lehmer stated in 1951: "A random sequence is a vague notion... in which each term is unpredictable to the uninitiated and whose digits pass a certain number of tests traditional with statisticians".[1]

Axiomatic probability theory deliberately avoids a definition of a random sequence.[2] Traditional probability theory does not state if a specific sequence is random, but generally proceeds to discuss the properties of random variables and stochastic sequences assuming some definition of randomness. The Bourbaki school considered the statement "let us consider a random sequence" an abuse of language.[3]

Early history

Émile Borel was one of the first mathematicians to formally address randomness in 1909.[4] In 1919 Richard von Mises gave the first definition of algorithmic randomness, which was inspired by the law of large numbers, although he used the term collective rather than random sequence. Using the concept of the impossibility of a gambling system, von Mises defined an infinite sequence of zeros and ones as random if it is not biased by having the frequency stability property i.e. the frequency of zeros goes to 1/2 and every sub-sequence we can select from it by a "proper" method of selection is also not biased.[5]

The sub-sequence selection criterion imposed by von Mises is important, because although 0101010101... is not biased, by selecting the odd positions, we get 000000... which is not random. Von Mises never totally formalized his definition of a proper selection rule for sub-sequences, but in 1940 Alonzo Church defined it as any recursive function which having read the first N elements of the sequence decides if it wants to select element number N + 1. Church was a pioneer in the field of computable functions, and the definition he made relied on the Church Turing Thesis for computability.[6] This definition is often called Mises–Church randomness.

Modern approaches

During the 20th century various technical approaches to defining random sequences were developed and now three distinct paradigms can be identified. In the mid 1960s, A. N. Kolmogorov and D. W. Loveland independently proposed a more permissive selection rule.[7][8] In their view Church's recursive function definition was too restrictive in that it read the elements in order. Instead they proposed a rule based on a partially computable process which having read any N elements of the sequence, decides if it wants to select another element which has not been read yet. This definition is often called Kolmogorov–Loveland stochasticity. But this method was considered too weak by Alexander Shen who showed that there is a Kolmogorov–Loveland stochastic sequence which does not conform to the general notion of randomness.

In 1966 Per Martin-Löf introduced a new notion which is now generally considered the most satisfactory notion of algorithmic randomness. His original definition involved measure theory, but it was later shown that it can be expressed in terms of Kolmogorov complexity. Kolmogorov's definition of a random string was that it is random if it has no description shorter than itself via a universal Turing machine.[9]

Three basic paradigms for dealing with random sequences have now emerged:[10]

  • The frequency / measure-theoretic approach. This approach started with the work of Richard von Mises and Alonzo Church. In the 1960s Per Martin-Löf noticed that the sets coding such frequency-based stochastic properties are a special kind of measure zero sets, and that a more general and smooth definition can be obtained by considering all effectively measure zero sets.
  • The complexity / compressibility approach. This paradigm was championed by A. N. Kolmogorov along with contributions from Leonid Levin and Gregory Chaitin. For finite sequences, Kolmogorov defines randomness of a binary string of length n as the entropy (or Kolmogorov complexity) normalized by the length n. In other words, if the Kolmogorov complexity of the string is close to n, it is very random; if the complexity is far below n, it is not so random. The dual concept of randomness is compressibility ‒ the more random a sequence is, the less compressible, and vice versa.
  • The predictability approach. This paradigm is due to Claus P. Schnorr and uses a slightly different definition of constructive martingales than martingales used in traditional probability theory.[11] Schnorr showed how the existence of a selective betting strategy implied the existence of a selection rule for a biased sub-sequence. If one only requires a recursive martingale to succeed on a sequence instead of constructively succeed on a sequence, then one gets the concept of recursive randomness.[further explanation needed] Yongge Wang showed[12][13] that recursive randomness concept is different from Schnorr's randomness concept.[further explanation needed]

In most cases, theorems relating the three paradigms (often equivalence) have been proven.[14]

See also

References

Notes

  1. ^ "What is meant by the word Random" in Mathematics and common sense by Philip J. Davis 2006 ISBN 1-56881-270-1 pages 180-182
  2. ^ Inevitable Randomness in Discrete Mathematics by József Beck 2009 ISBN 0-8218-4756-2 page 44
  3. ^ Algorithms: main ideas and applications by Vladimir Andreevich Uspenskiĭ, Alekseĭ, Lʹvovich Semenov 1993 Springer ISBN 0-7923-2210-X page 166
  4. ^ E. Borel, Les probabilites denombrables et leurs applications arithmetique Rend. Circ. Mat. Palermo 27 (1909) 247–271
  5. ^ Laurant Bienvenu "Kolmogorov Loveland Stochasticity" in STACS 2007: 24th Annual Symposium on Theoretical Aspects of Computer Science by Wolfgang Thomas ISBN 3-540-70917-7 page 260
  6. ^ Church, Alonzo (1940). "On the Concept of Random Sequence". Bull. Amer. Math. Soc. 46 (2): 130–136. doi:10.1090/S0002-9904-1940-07154-X.
  7. ^ A. N. Kolmogorov, Three approaches to the quantitative definition of information Problems of Information and Transmission, 1(1):1–7, 1965.
  8. ^ D.W. Loveland, A new interpretation of von Mises' concept of random sequence Z. Math. Logik Grundlagen Math 12 (1966) 279–294
  9. ^ An introduction to Kolmogorov complexity and its applications by Ming Li, P. M. B. Vitányi 1997 0387948686 pages 149–151
  10. ^ R. Downey, Some Recent Progress in Algorithmic Randomness in Mathematical foundations of computer science 2004: by Jiří Fiala, Václav Koubek 2004 ISBN 3-540-22823-3 page 44
  11. ^ Schnorr, C. P. (1971). "A unified approach to the definition of a random sequence". Mathematical Systems Theory. 5 (3): 246–258. doi:10.1007/bf01694181. S2CID 8931514.
  12. ^ Yongge Wang: Randomness and Complexity. PhD Thesis, 1996. http://webpages.uncc.edu/yonwang/papers/IPL97.pdf
  13. ^ Wang, Yongge (1999). "A separation of two randomness concepts". Information Processing Letters. 69 (3): 115–118. CiteSeerX 10.1.1.46.199. doi:10.1016/S0020-0190(98)00202-6.
  14. ^ Wolfgang Merkle, Kolmogorov Loveland Stochasticity in Automata, languages and programming: 29th international colloquium, ICALP 2002, by Peter Widmayer et al. ISBN 3-540-43864-5 page 391

Read other articles:

Kröger–Vink notation is a set of conventions that are used to describe electric charges and lattice positions of point defect species in crystals. It is primarily used for ionic crystals and is particularly useful for describing various defect reactions. It was proposed by F. A. Kröger [fr] and H. J. Vink [nl].[1][2] Notation The notation follows the scheme: MCS M corresponds to the species. These can be atoms – e.g., Si, Ni, O, Cl, vacancies �...

 

Penggambaran Bigtan dan Teresh karya Antoine Caron. Bigtan dan Teresh atau Bigtan dan Teresy adalah dua kasim yang melayani raja Persia Ahasuerus, menurut Kitab Ester. Mordecai berrehat di halaman istana selama sehari dan mendengar dua kasim tersebut yang berrencana untuk membunuh sang raja. Ia memberitahukan sang raja melalui Ester, sehingga rencana tersebut menjadi terbongkar. Ia dihargai oleh sang raja pada masa setelahnya.[1] Dalam kitab deuterokanonika/apokrifa berjudul Tambahan-...

 

Bharata (Sanskerta: भरट; Bharaṭa) adalah tokoh protagonis dari wiracarita Ramayana. Ia adalah putera prabu Dasarata dengan permaisuri Kekayi, dan merupakan adik Rama. Konon Bharata adalah raja dari golongan Suryawangsa yang sangat baik dan bijaksana setelah Rama. Menurut pandangan Hindu, Bharata lahir dari aspek Chakra Sudarshana yang terletak di tangan kanan Dewa Wisnu. Kelahiran dan keluarga Bharata merupakan putera dari Kekayi, istri ketiga Raja Dasarata dari Ayodhya. Ia memiliki ...

ميا شعريم מאה שערים أحد شوارع حي ميا شعريم الإحداثيات 31°47′13″N 35°13′20″E / 31.786944444444°N 35.222222222222°E / 31.786944444444; 35.222222222222   تاريخ التأسيس 1874 أسسها مئير أورباخ، ويوسف ريفلين تقسيم إداري  البلد إسرائيل[1]  التقسيم الأعلى القدس  تعديل مصدري - تعديل   ميا شع�...

 

Sayap Sayap PatahPoster resmiSutradaraRudi SoedjarwoProduser Yoen K Denny Siregar Ditulis oleh Monty Tiwa Eric Tiwa Alim Sudio Pemeran Nicholas Saputra Ariel Tatum Penata musikAndi RiantoSinematograferArfianPenyuntingWawan I. WibowoPerusahaanproduksi Maxima Pictures Denny Siregar Production Tanggal rilis 18 Agustus 2022 (2022-08-18) Durasi110 menitNegaraIndonesiaBahasaBahasa Indonesia Sayap Sayap Patah adalah sebuah film drama laga Indonesia tahun 2022 yang disutradarai oleh Rudi S...

 

Angelo Caroselli, Ritratto di Giovan Battista Andreini Giovan Battista Andreini (Firenze, 1576 o 1579 – Reggio nell'Emilia, 7 giugno 1654) è stato un attore teatrale, drammaturgo e capocomico italiano. Fu autore di testi drammatici, trattati teatrali e opere in versi. Indice 1 Biografia 2 Opere principali 2.1 Teatro 2.2 Opere teoriche 2.3 Poemi 3 Note 4 Bibliografia 5 Altri progetti 6 Collegamenti esterni Biografia Giovan Battista Andreini nacque a Firenze molto probabilmente il 9 febbraio...

Gereja GanjuranGereja Hati Kudus Tuhan YesusBagian luar, dari depan7°55′35.69″S 110°19′8.38″E / 7.9265806°S 110.3189944°E / -7.9265806; 110.3189944Koordinat: 7°55′35.69″S 110°19′8.38″E / 7.9265806°S 110.3189944°E / -7.9265806; 110.3189944LokasiGanjuran, Bantul, Daerah Istimewa Yogyakarta, IndonesiaNegaraIndonesiaDenominasiGereja Katolik RomaJumlah anggota/umat8.000 (2011)Situs webwww.gerejaganjuran.orgSejarahDidirikan16 A...

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

Set of physiological feedback interactions Schematic of the HPA axis (CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone) Hypothalamus, pituitary gland, and adrenal cortex The hypothalamic–pituitary–adrenal axis (HPA axis or HTPA axis) is a complex set of direct influences and feedback interactions among three components: the hypothalamus (a part of the brain located below the thalamus), the pituitary gland (a pea-shaped structure located below the hypothalamus), and ...

Raphanin Names Preferred IUPAC name (1E)-4-Isothiocyanato-1-(methanesulfinyl)but-1-ene Other names Sulforaphen; Sulforaphene; Sativin Identifiers CAS Number 592-95-0 Y 3D model (JSmol) Interactive image ChemSpider 16736047 PubChem CID 6433206 UNII NCO9MC39IO Y InChI InChI=1S/C6H9NOS2/c1-10(8)5-3-2-4-7-6-9/h3,5H,2,4H2,1H3Key: QKGJFQMGPDVOQE-UHFFFAOYSA-NInChI=1/C6H9NOS2/c1-10(8)5-3-2-4-7-6-9/h3,5H,2,4H2,1H3Key: QKGJFQMGPDVOQE-UHFFFAOYAU SMILES S=C=N/CC\C=C\S(=O)C Properties...

 

Commuter rail station in Chicago, Illinois 51st, 53rd St./Hyde ParkAt Lake Park AvenueHyde Park/51st–53rd Street stationGeneral informationLocation53rd Street at Lake Park AvenueHyde Park, Chicago, ILCoordinates41°48′04″N 87°35′14″W / 41.8010°N 87.5872°W / 41.8010; -87.5872Owned byMetraLine(s)University Park Sub DistrictPlatforms2 island platforms (formerly 3)[citation needed]Tracks4ConnectionsCTA BusConstructionAccessibleYesOther informationFare ...

 

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (مارس 2019) هذه قائمة الدول حسب تخصيص عنوان IPv4 ، اعتبارًا من 2 أبريل 2012 (2012-04-02)[�...

American college football season 2011 Maryland Terrapins footballConferenceAtlantic Coast ConferenceDivisionAtlantic DivisionRecord2–10 (1–7 ACC)Head coachRandy Edsall (1st season)Offensive coordinatorGary Crowton (1st season)Offensive schemeMultipleDefensive coordinatorTodd Bradford (1st season)Base defense4–3Captains Andrew Gonnella Davin Meggett Kenny Tate Joe Vellano Home stadiumByrd StadiumSeasons← 20102012 → 2011 Atlantic Coast C...

 

Questa voce sugli argomenti allenatori di pallacanestro statunitensi e cestisti statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti dei progetti di riferimento 1, 2. Jeff GrayerNazionalità Stati Uniti Altezza196 cm Peso91 kg Pallacanestro RuoloAla piccola / guardiaAllenatore Termine carriera1999 - giocatore2010 - allenatore CarrieraGiovanili Northwestern Community H.S.1984-1988 Iowa St. Cyclones Squadre di club...

 

First book of the Hebrew Bible and the Christian Old Testament The Book of Genesis redirects here. For the comic, see The Book of Genesis (comic). Hebrew Bible (Judaism) Torah (Instruction)GenesisBereshitExodusShemotLeviticusWayiqraNumbersBemidbarDeuteronomyDevarim Nevi'im (Prophets) Former JoshuaYehoshuaJudgesShofetimSamuelShemuelKingsMelakhim Latter IsaiahYeshayahuJeremiahYirmeyahuEzekielYekhezqel Minor Hosea Joel Amos Obadiah Jonah Micah Nahum Habakkuk Zephaniah Haggai Zechariah ...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2023) بن سيفى، عز الدين (2019). معلمة المغرب قاموس مرتب على حروف الهجاء، يحيط بالمعارف المتعلقة بمختلف الجوانب التاريخية والجغرافية والبشرية والحضارية للمغرب الأق�...

 

City of FathersNama lainHangul부산 Hanja父山 Alih Aksara yang DisempurnakanBusan SutradaraPark Ji-wonProduserKim Sang-oh Park Ji-won David ChoDitulis olehPark Ji-wonPemeranKim Young-ho Ko Chang-seok Yoo Seung-hoPenata musikChoi Seung-hyunSinematograferKim Yun-suPenyuntingSeo Yong-deokDistributorSidus FNHTanggal rilis 15 Oktober 2009 (2009-10-15) Durasi101 menitNegaraKorea SelatanBahasaKorea City of Fathers (Hangul: 부산; Hanja: 父山; RR:&...

 

Metro de Nápoles LugarUbicación Nápoles, ItaliaDescripciónTipo MetroInauguración 1925Características técnicasLongitud 50 kmEstaciones 37ExplotaciónLíneas 4Operador ANM, EAVMapa Red de metro de NápolesNotas Web de Metropolitana di Napoli[editar datos en Wikidata] El Metro de Nápoles (en italiano Metropolitana di Napoli) es una red de ferrocarril metropolitano que da servicio a la ciudad italiana de Nápoles. Está compuesto por cuatro líneas: Línea 1, Línea 2, Línea 6 ...

Untuk kegunaan lain, lihat Makron (disambiguasi). Artikel ini bukan mengenai Makron atau huruf Latin Ā. Huruf KirilA dengan makron Alfabet KirilHuruf SlaviaАА́А̀А̂А̄ӒБВГҐДЂЃЕЕ́ÈЕ̂ЁЄЖЗЗ́ЅИИ́ЍИ̂ЙІЇЈКЛЉМНЊОŌПРСС́ТЋЌУУ́ У̀У̂ӮЎФХЦЧЏШЩЪЫЬЭЮЯHuruf non-SlaviaӐА̊А̃Ӓ̄ӔӘӘ́Ә̃ӚВ̌ҒГ̑Г̣Г̌ҔӺҒ̌ӶД̌Д̣Д̆ӖЕ̄Е̃Ё̄Є̈ӁҖӜҘӞЗ̌З̱З̣ԐԐ̈ӠӢИ̃ҊӤҚӃҠҞҜК̣ԚӅԮԒӍӉҢԨӇҤО́О�...

 

One of the six sestieri of Venice, historical neighbourhood This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dorsoduro – news · newspapers · books · scholar · JSTOR (June 2023) (Learn how and when to remove this message) Location of Dorsoduro within Venice Shady canal in Dorsoduro, Venice The Watercolorist in...