Let [κ]<ω denote the set of all finite subsets of κ. A cardinal numberκ is called Ramsey if, for every function
f: [κ]<ω → {0, 1}
there is a set A of cardinality κ that is homogeneous for f. That is, for every n, the function f is constant on the subsets of cardinality n from A. A cardinal κ is called ineffably Ramsey if A can be chosen to be a stationary subset of κ. A cardinal κ is called virtually Ramsey if for every function
f: [κ]<ω → {0, 1}
there is C, a closed and unbounded subset of κ, so that for every λ in C of uncountable cofinality, there is an unbounded subset of λ that is homogenous for f; slightly weaker is the notion of almost Ramsey where homogenous sets for f are required of order type λ, for every λ < κ.
The existence of any of these kinds of Ramsey cardinal is sufficient to prove the existence of 0#, or indeed that every set with rank less than κ has a sharp. This in turn implies the falsity of the Axiom of Constructibility of Kurt Gödel.
A property intermediate in strength between Ramseyness and measurability is existence of a κ-complete normal non-principal idealI on κ such that for every A ∉ I and for every function
f: [κ]<ω → {0, 1}
there is a set B ⊂ A not in I that is homogeneous for f. This is strictly stronger than κ being ineffably Ramsey.
Definition by κ-models
A regular cardinal κ is Ramsey if and only if[1][better source needed] for any set A ⊂ κ, there is a transitive set M ⊨ ZFC- (i.e. ZFC without the axiom of powerset) of size κ with A ∈ M, and a nonprincipal ultrafilterU on the Boolean algebra P(κ) ∩ M such that:
U is an M-ultrafilter: for any sequence ⟨Xβ : β < κ⟩ ∈ M of members of U, the diagonal intersection ΔXβ = {α < κ : ∀β < α(α ∈ Xβ)} ∈ U,
U is weakly amenable: for any sequence ⟨Xβ : β < κ⟩ ∈ M of subsets of κ, the set {β < κ : Xβ ∈ U} ∈ M, and
U is σ-complete: the intersection of any countable family of members of U is again in U.
Drake, F. R. (1974). Set Theory: An Introduction to Large Cardinals (Studies in Logic and the Foundations of Mathematics; V. 76). Elsevier Science Ltd. ISBN0-444-10535-2.
Erdős, Paul; Hajnal, András (1962), "Some remarks concerning our paper "On the structure of set-mappings. Non-existence of a two-valued σ-measure for the first uncountable inaccessible cardinal", Acta Mathematica Academiae Scientiarum Hungaricae, 13 (1–2): 223–226, doi:10.1007/BF02033641, ISSN0001-5954, MR0141603, S2CID121179872