Ramanujan–Nagell equation

In mathematics, in the field of number theory, the Ramanujan–Nagell equation is an equation between a square number and a number that is seven less than a power of two. It is an example of an exponential Diophantine equation, an equation to be solved in integers where one of the variables appears as an exponent.

The equation is named after Srinivasa Ramanujan, who conjectured that it has only five integer solutions, and after Trygve Nagell, who proved the conjecture. It implies non-existence of perfect binary codes with the minimum Hamming distance 5 or 6.

Equation and solution

The equation is

and solutions in natural numbers n and x exist just when n = 3, 4, 5, 7 and 15 (sequence A060728 in the OEIS).

This was conjectured in 1913 by Indian mathematician Srinivasa Ramanujan, proposed independently in 1943 by the Norwegian mathematician Wilhelm Ljunggren, and proved in 1948 by the Norwegian mathematician Trygve Nagell. The values of n correspond to the values of x as:-

x = 1, 3, 5, 11 and 181 (sequence A038198 in the OEIS).[1]

Triangular Mersenne numbers

The problem of finding all numbers of the form 2b − 1 (Mersenne numbers) which are triangular is equivalent:

The values of b are just those of n − 3, and the corresponding triangular Mersenne numbers (also known as Ramanujan–Nagell numbers) are:

for x = 1, 3, 5, 11 and 181, giving 0, 1, 3, 15, 4095 and no more (sequence A076046 in the OEIS).

Equations of Ramanujan–Nagell type

An equation of the form

for fixed D, A, B and variable x, n is said to be of Ramanujan–Nagell type. The result of Siegel[2] implies that the number of solutions in each case is finite.[3] By representing with and with , the equation of Ramanujan–Nagell type is reduced to three Mordell curves (indexed by ), each of which has a finite number of integer solutions:

,
,
.

The equation with has at most two solutions, except in the case corresponding to the Ramanujan–Nagell equation. This does not hold for , such as , where has the four solutions . In general, if for an integer there are at least the four solutions

and these are the only four if .[4] There are infinitely many values of D for which there are exactly two solutions, including .[1]

Equations of Lebesgue–Nagell type

An equation of the form

for fixed D, A and variable x, y, n is said to be of Lebesgue–Nagell type. This is named after Victor-Amédée Lebesgue, who proved that the equation

has no nontrivial solutions.[5]

Results of Shorey and Tijdeman[6] imply that the number of solutions in each case is finite.[7] Bugeaud, Mignotte and Siksek[8] solved equations of this type with A = 1 and 1 ≤ D ≤ 100. In particular, the following generalization of the Ramanujan–Nagell equation:

has positive integer solutions only when x = 1, 3, 5, 11, or 181.

See also

Notes

References

  • Beukers, F. (1981). "On the generalized Ramanujan-Nagell equation I" (PDF). Acta Arithmetica. 38 (4): 401–403. doi:10.4064/aa-38-4-389-410.
  • Bugeaud, Y.; Mignotte, M.; Siksek, S. (2006). "Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell equation". Compositio Mathematica. 142: 31–62. arXiv:math/0405220. doi:10.1112/S0010437X05001739. S2CID 18534268.
  • Lebesgue (1850). "Sur l'impossibilité, en nombres entiers, de l'équation xm = y2 + 1". Nouv. Ann. Math. Série 1. 9: 178–181.
  • Ljunggren, W. (1943). "Oppgave nr 2". Norsk Mat. Tidsskr. 25: 29.
  • Nagell, T. (1948). "Løsning till oppgave nr 2". Norsk Mat. Tidsskr. 30: 62–64.
  • Nagell, T. (1961). "The Diophantine equation x2 + 7 = 2n". Ark. Mat. 30 (2–3): 185–187. Bibcode:1961ArM.....4..185N. doi:10.1007/BF02592006.
  • Ramanujan, S. (1913). "Question 464". J. Indian Math. Soc. 5: 130.
  • Saradha, N.; Srinivasan, Anitha (2008). "Generalized Lebesgue–Ramanujan–Nagell equations". In Saradha, N. (ed.). Diophantine Equations. Narosa. pp. 207–223. ISBN 978-81-7319-898-4.
  • Shorey, T. N.; Tijdeman, R. (1986). Exponential Diophantine equations. Cambridge Tracts in Mathematics. Vol. 87. Cambridge University Press. pp. 137–138. ISBN 0-521-26826-5. Zbl 0606.10011.
  • Siegel, C. L. (1929). "Uber einige Anwendungen Diophantischer Approximationen". Abh. Preuss. Akad. Wiss. Phys. Math. Kl. 1: 41–69.

Read other articles:

Artikel ini memuat Surat Batak. Tanpa dukungan multibahasa, Anda mungkin akan melihat tanda tanya, tanda kotak, atau karakter lain selain dari Surat Batak. Surat Batak [a]Surat na Sampulu Sia Si Sia-sia Aksara BatakJenis aksara Abugida BahasaRumpun bahasa BatakPeriodeAbad ke-18 hingga sekarangArah penulisanKiri ke kananAksara terkaitSilsilahMenurut hipotesis hubungan antara abjad Aramea dengan Brahmi, maka silsilahnya sebagai berikut: Abjad Proto-Sinai Abjad Fenisia Abjad Aramea Aksa...

 

LegenJenisMinuman tradisionalAsalIndonesiaDiperkenalkanSekitar tahun 1895-1896Bagian darimasakan Indonesia RasaManisWarnaputih1.5-3.0 %[sunting di Wikidata]lbs Legen (Jawa: ꧋ꦊꦒꦺꦤ꧀, translit. lêgèn) adalah nama minuman tradisional yang banyak ditemukan di sekitar wilayah Jawa Tengah dan Jawa Timur, Indonesia Khususnya di Kabupaten Lamongan. Minuman ini diambil dari bagian pohon siwalan. Jika kita menuju Kota Yogyakarta melalui jalur selatan dari Jakarta, ki...

 

Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Siti Nurhaliza di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjema...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2021) شكل مبدئي لأحادي الاستقرار متعدد الذبذبات BJT . المدخلات Z- مرتفعه، ثم ينخفض مؤقتًا، ثم سوف يعود إلى Z- مرتفعه. هذا المثال قابل لإعادة تطبيقه من جديد . أحادي الاس�...

 

History of Indian state of Bihar The Maurya Empire with capital at Patliputra spanned across the Indian subcontinent as well as over parts of modern-day Iran and modern-day Myanmar. History of South Asia Outline Palaeolithic (2,500,000–250,000 BC) Madrasian culture Soanian culture Neolithic (10,800–3300 BC) Bhirrana culture (7570–6200 BC) Mehrgarh culture (7000–3300 BC) Edakkal culture (5000–3000 BC) Chalcolithic (3500–1500 BC) Anarta tradition (c. 3950–1900 BC) Ahar-Banas...

 

Public school in Oxnard, California, United StatesPacifica High SchoolAddress600 East Gonzales RoadOxnard, California 93036United StatesCoordinates34°13′06″N 119°10′13″W / 34.218387°N 119.170327°W / 34.218387; -119.170327InformationTypePublicMottoIt's good to be a Triton!EstablishedAugust 28, 2001School districtOxnard Union High School DistrictPrincipalChris RamirezTeaching staff125.60 (FTE)[1]Enrollment3,051[1] (2019–20)Student to teache...

Pour un article plus général, voir Tour d'Italie 2021. 14e étape du Tour d'Italie 2021 GénéralitésCourse14e étape، Tour d'Italie 2021Type Étape de montagneDate22 mai 2021Distance205 kmPays ItalieLieu de départCittadellaLieu d'arrivéeMonte ZoncolanPartants161Arrivants159Vitesse moyenne38,756 km/hDénivelé3 700 mRésultats de l’étape1er Lorenzo Fortunato5 h 17 min 22 s(Eolo-Kometa)2e Jan Tratnik+ 26 s3e Alessandro Covi+ 59 sClassement général à l’issue de l’étape Eg...

 

Pour les articles homonymes, voir Vingt-Neuf-Mars. Éphémérides Mars 1er 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31         29 février 29 avril Chronologies thématiques Croisades Ferroviaires Sports Disney Anarchisme Catholicisme Abréviations / Voir aussi (° 1852) = né en 1852 († 1885) = mort en 1885 a.s. = calendrier julien n.s. = calendrier grégorien Calendrier Calendrier perpétuel Liste de calendriers Naissances du jour...

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

Detective Conan -L'ultimo mago del secoloKaito KidTitolo originale名探偵コナン 世紀末の魔術師Meitantei Konan - Seikimatsu no majutsushi Lingua originalegiapponese Paese di produzioneGiappone Anno1999 Durata100 min Genereanimazione, giallo, storico RegiaKenji Kodama SceneggiaturaKazunari Kōchi ProduttoreMichihiko Suwa, Masahito Yoshioka Casa di produzioneTMS Entertainment, Shogakukan, Yomiuri TV, Polygram Distribuzione in italianoMediaset FotografiaTakashi Nomura Effetti ...

 

1991 Indian filmThalattu KetkuthammaPosterDirected byRaj KapoorWritten byRaj KapoorProduced byVijayalakshmi SrinivasanKanchana SivaramanStarringPrabhuKanakaCinematographyB. R. VijayalakshmiEdited byB. LeninV. T. VijayanMusic byIlaiyaraajaProductioncompanySivaji ProductionsRelease date 5 November 1991 (1991-11-05) Running time150 minutesCountryIndiaLanguageTamil Thalattu Ketkuthamma (transl. Can you hear the lullaby?) is a 1991 Indian Tamil-language drama film directed by...

 

Artūras KasputisArtūras Kasputis lors du Tour de Romandie 2012InformationsNom court Артурас КаспутисNaissance 26 février 1967 (57 ans)KlaipėdaNationalité lituanienneÉquipe actuelle AG2R La Mondiale (directeur sportif)Distinction Maître émérite du sport de l'URSSÉquipes professionnelles 1992Postobón Manzana-Ryalco1994-1995Chazal-MBK-König1996Petit Casino1997Casino-c'est votre équipe1998-1999Casino-AG2R2000-2002AG2R PrévoyanceÉquipes dirigées 2003-2007Ag2r Pr...

Questa voce sull'argomento competizioni ciclistiche è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Vuelta Ciclista a Costa RicaSport Ciclismo su strada TipoGara individuale CategoriaUomini Elite, Classe 2.2 FederazioneUnione Ciclistica Internazionale Paese Costa Rica CadenzaAnnuale Aperturadicembre PartecipantiVariabile FormulaCorsa a tappe StoriaFondazione1965 Numero edizioni56 (al 2022) Detento...

 

This is a list of airlines that have an air operator's certificate issued by the Agence Nationale de l'Aviation Civile of Burkina Faso. [1][2] Airline IATA ICAO Callsign Hub airport(s) Image Commenced operations Notes Air Burkina 2J VBW BURKINA Ouagadougou Airport 1985 Colombe Airlines CBL Ouagadougou Airport [3] 2012 Formed in 6/12 by Groupe Tigahiré. Started operations on 5/10/13. Suspended operations in 2017 ? Faso Airways F3 FSW FASO Ouagadougou Airport 2000...

 

Lambang Patriarkat Oikumenis Konstantinopel, berada di pintu masuk Katedral St. George, Istanbul Dalam heraldik dan veksilologi, elang berkepala dua (atau elang ganda) adalah muatan yang terkait dengan konsep Kekaisaran. Sebagian besar penggunaan modern simbol secara langsung atau tidak langsung terkait dengan penggunaannya oleh Kekaisaran Romawi/Bizantium, yang penggunaannya mewakili dominasi Kekaisaran atas Timur Dekat dan Barat. Simbol ini jauh lebih tua, dan makna aslinya diperdebatkan di...

諸宸國籍 中华人民共和国(1976年-2012年) 卡塔尔(2012年至今)出生 (1976-03-13) 1976年3月13日(48歲) 中国浙江省温州市頭銜特级大师(2001年)女子世界冠軍2001年-2004年國際棋聯等级分2419 (2024年7月)最高等級分2548(2008年1月) 諸宸(1976年3月13日—),出生于中国浙江省温州市,祖籍浙江省兰溪市,原籍中国,现籍卡塔尔的国际象棋棋手,2001年25岁时在2001-20...

 

Pour les articles homonymes, voir Trigo (homonymie) et Limpio (homonymie). Trigo LimpioBiographiePériode d'activité Depuis 1975Autres informationsLabel Philips RecordsGenre artistique FolkSite web trigolimpio.wixsite.com/trigolimpiomodifier - modifier le code - modifier Wikidata Trigo Limpio est un ancien groupe de musique espagnol très populaire en Espagne et en Amérique hispanique durant les années 1970 et 1980. Il était formé par Amaya Saizar, Iñaki de Pablo et Luis Carlos Gil. Av...

 

Alejandro LemboNazionalità Uruguay Altezza187 cm Peso75 kg Calcio RuoloDifensore Termine carriera2013 CarrieraSquadre di club1 1997-2000 Bella Vista56 (5)2000-2001 Parma0 (0)2001-2003 Nacional109 (10)2003-2007 Betis46 (1)2007-2008 Danubio18 (0)2008-2009 Arīs Salonicco19 (1)2009-2011 Nacional54 (1)2011-2012 Belgrano28 (0)2012-2013 Nacional16 (0) Nazionale 1997 Uruguay U-20? (?)1999-2004 Uruguay38 (2) Palmarès  Mondiale di calcio Under-2...

Parte da série sobreUnidades de medida Temposegundo · minuto · hora · dia · semana · quinzena · mês (bimestre · trimestre · quadrimestre · semestre) · ano (biênio · triênio · quadriênio · quinquênio · década · século · milênio) · ano...

 

آثار المسجد الكبير في كلوة موقع اليونيسكو للتراث العالمي المسجد الكبير في كلوة الدولة جمهورية تنزانيا المتحدة النوع ثقافي المعايير iii رقم التعريف 144 المنطقة إفريقيا الإحداثيات 8°58′54″S 39°31′02″E / 8.98173°S 39.51722°E / -8.98173; 39.51722   مهدد 2004–إلى الآن تاريخ الاعتماد ال�...