Water vapor emission in the vicinity of the star was detected in the microwave band by D. F. Dickinson in 1973.[15] This is originating from strong maser emission in a circumstellar gas-dust shell.[16] The flux density of these water masers is over 100 Jy.[9] The star is losing mass at a rate of 3×10−6 M☉·yr−1;[8] the equivalent of the Sun's mass in 3.3 million years. The velocity of the spherically expanding gas is as high as 11 km/s in the water maser region, at a radius of 5 to 25 AU. In a SiO emitting region located ~400 AU from the star, the gas velocity is 7.8 km/s.[17] This outflow appears clumpy and asymmetrical[18] with a strong temporal variation.[16]
^ abJoy, Alfred H. (November 1942), "A Survey of the Spectra and Radial Velocities of the Less Regular M-Type Variable Stars", Astrophysical Journal, 96: 344, Bibcode:1942ApJ....96..344J, doi:10.1086/144469.
^ abYates, J. A.; et al. (2002), Mineese, Victor; Reid, Mark (eds.), "The H2O maser proper motions of RT Vir and VX Sgr", Cosmic Masers: From Proto-Stars to Black Holes, IAU Symposium, 206, San Francisco: Astronomical Society of the Pacific: 298, Bibcode:2002IAUS..206..298Y.
^ abcImai, H.; et al. (March 1997), "Measurement of shifts in line-of-sight velocities of stellar water masers using VLBI.", Astronomy and Astrophysics, 319: L1 –L4, Bibcode:1997A&A...319L...1I.
^Pickering, E. C.; Fleming, W. P. (April 1896), "Harvard College Observatory, circular no. 6. New variable stars", Astrophysical Journal, 3: 296–302, Bibcode:1896ApJ.....3..296P, doi:10.1086/140219.
^van der Veen, W. E. C. J.; et al. (March 1995), "The distribution of dust around Asymptotic Giant Branch stars", Astronomy and Astrophysics, 295: 445–458, Bibcode:1995A&A...295..445V.
^ abMendoza-Torres, J. E.; et al. (December 1997), "Evolution of H2O maser emission in the direction of the semiregular variable RT Virginis during 1985-1996", Astronomy and Astrophysics Supplement Series, 126 (2): 257–266, Bibcode:1997A&AS..126..257M, doi:10.1051/aas:1997263.
^Yates, J. A.; et al. (2000), Kastner, J. H.; et al. (eds.), "Is the Outflow from RT Vir Bipolar or Rotating?", Asymmetrical Planetary Nebulae II: From Origins to Microstructures, ASP Conference Series, 199: 79, Bibcode:2000ASPC..199...79Y, ISBN1-58381-026-9.
Etoka, S.; et al. (November 2001), "Monitoring of long term behaviour of OH masers in semiregular variables: R Crt, W Hya and RT Vir", Astronomy and Astrophysics, 378 (2): 522–538, Bibcode:2001A&A...378..522E, doi:10.1051/0004-6361:20011184.
Lekht, E. E.; et al. (March 1999), "Dynamics of the circumstellar envelope of RT Virginis on the basis of the H2O maser monitoring", Astronomy and Astrophysics, 343: 241–250, Bibcode:1999A&A...343..241L.
Richards, A. M. S.; et al. (1999), Le Bertre, T.; et al. (eds.), "A MERLIN movie of mass-loss from RT Vir", Asymptotic Giant Branch Stars, IAU Symposium, 191: 315, Bibcode:1999IAUS..191..315R, ISBN1-886733-90-2.