Quillen–Suslin theorem

Quillen–Suslin theorem
FieldCommutative algebra
Conjectured byJean-Pierre Serre
Conjectured in1955
First proof byDaniel Quillen
Andrei Suslin
First proof in1976

The Quillen–Suslin theorem, also known as Serre's problem or Serre's conjecture, is a theorem in commutative algebra concerning the relationship between free modules and projective modules over polynomial rings. In the geometric setting it is a statement about the triviality of vector bundles on affine space.

The theorem states that every finitely generated projective module over a polynomial ring is free.

History

Background

Geometrically, finitely generated projective modules over the ring correspond to vector bundles over affine space , where free modules correspond to trivial vector bundles. This correspondence (from modules to (algebraic) vector bundles) is given by the 'globalisation' or 'twiddlification' functor, sending (Hartshorne II.5, page 110). Affine space is topologically contractible, so it admits no non-trivial topological vector bundles. A simple argument using the exponential exact sequence and the d-bar Poincaré lemma shows that it also admits no non-trivial holomorphic vector bundles.

Jean-Pierre Serre, in his 1955 paper Faisceaux algébriques cohérents, remarked that the corresponding question was not known for algebraic vector bundles: "It is not known whether there exist projective A-modules of finite type which are not free."[1] Here is a polynomial ring over a field, that is, = .

To Serre's dismay, this problem quickly became known as Serre's conjecture. (Serre wrote, "I objected as often as I could [to the name]."[2]) The statement does not immediately follow from the proofs given in the topological or holomorphic case. These cases only guarantee that there is a continuous or holomorphic trivialization, not an algebraic trivialization.

Serre made some progress towards a solution in 1957 when he proved that every finitely generated projective module over a polynomial ring over a field was stably free, meaning that after forming its direct sum with a finitely generated free module, it became free. The problem remained open until 1976, when Daniel Quillen and Andrei Suslin independently proved the result. Quillen was awarded the Fields Medal in 1978 in part for his proof of the Serre conjecture. Leonid Vaseršteĭn later gave a simpler and much shorter proof of the theorem, which can be found in Serge Lang's Algebra.

Generalization

A generalization relating projective modules over regular Noetherian rings A and their polynomial rings is known as the Bass–Quillen conjecture.

Note that although -bundles on affine space are all trivial, this is not true for G-bundles where G is a general reductive algebraic group.

Notes

  1. ^ "On ignore s'il existe des A-modules projectifs de type fini qui ne soient pas libres." Serre, FAC, p. 243.
  2. ^ Lam, p. 1

References

  • Serre, Jean-Pierre (March 1955), "Faisceaux algébriques cohérents", Annals of Mathematics, Second Series, 61 (2): 197–278, doi:10.2307/1969915, JSTOR 1969915, MR 0068874
  • Serre, Jean-Pierre (1958), "Modules projectifs et espaces fibrés à fibre vectorielle", Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, Fasc. 2, Exposé 23 (in French), MR 0177011
  • Quillen, Daniel (1976), "Projective modules over polynomial rings", Inventiones Mathematicae, 36 (1): 167–171, doi:10.1007/BF01390008, MR 0427303
  • Suslin, Andrei A. (1976), Проективные модули над кольцами многочленов свободны [Projective modules over polynomial rings are free], Doklady Akademii Nauk SSSR (in Russian), 229 (5): 1063–1066, MR 0469905. Translated in "Projective modules over polynomial rings are free", Soviet Mathematics, 17 (4): 1160–1164, 1976.
  • Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556

An account of this topic is provided by:

Read other articles:

BucaramangaCityFrom top, left to right: Panoramic, Santander Park, Metropolitan Cathedral of the Holy Family, Courthouse and Night view of the Provincial Viaduct BenderaLambangJulukan: The Pretty City, City of ParksMotto: Montani semper liberiLokasi kota dan kotamadya Bucaramanga di Departemen Santander.Negara ColombiaRegionAndean RegionDepartmentSantanderFoundationDecember 22, 1622Pemerintahan • WalikotaLuis Francisco Bohorquez (L)Luas • City165 km...

 

 

Asteroid, disebut juga planet minor atau planetoid, adalah benda berukuran lebih kecil daripada planet, tetapi lebih besar daripada meteoroid, umumnya terdapat di bagian dalam Tata Surya (lebih dalam dari orbit planet Neptunus). Asteroid berbeda dengan komet dari penampakan visualnya. Komet menampakkan koma (ekor) sementara asteroid tidak. Istilah ini secara historis ditujukan untuk semua objek astronomis yang mengelilingi matahari dan setelah diobservasi tidak memiliki karakteristik komet ak...

 

 

Medical conditionLower gastrointestinal bleedingOther namesLGIBA positive fecal occult blood testSpecialtyGastroenterology Symptomsbright blood in stool dark blood in vomit Lower gastrointestinal bleeding, commonly abbreviated LGIB, is any form of gastrointestinal bleeding in the lower gastrointestinal tract. LGIB is a common reason for seeking medical attention at a hospital's emergency department.[1] LGIB accounts for 30–40% of all gastrointestinal bleeding and is less common...

Valarie AllmanAllman, 2018Informasi pribadiLahir23 Februari 1995 (umur 29)Newark, Delaware, United States[1][2]PendidikanUniversitas Stanford[3] OlahragaOlahragaTrek dan lapanganLombaLempar cakramTim KampusStanford Cardinal Rekam medali Putri athletics Mewakili the  Amerika Serikat Olimpiade 2020 Tokyo Discus throw Kejuaraan NACAC pada Atletik 2018 Toronto Discus Kejuaraan Junior Dunia pada Atletik 2014 Eugene Discus Universiade 2017 Taipei Discus Valarie Car...

 

 

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ран�...

 

 

Фигура Республики (порт. Efígie da República) используется в качестве национальной персонификации в Бразилии и Португалии, символизирует республику. Португальские 50 сентаву 1968 года Бразилия Фигура представляет изображение молодой женщины, носящей корону из лавровых листов в р...

Game publisher Chaosium Inc.Founded1975; 49 years ago (1975)FounderGreg StaffordCountry of originUnited StatesHeadquarters locationAnn Arbor, MichiganKey peopleGreg StaffordSandy PetersenRick MeintsJeff RichardNeil RobinsonMichael O'BrienPublication typesGames, BooksFiction genresRole-playing games, Board games, Fantasy fiction, Horror fiction, Weird fictionNo. of employees16Official websitechaosium.com Chaosium Inc. (/keɪˈɒsiəm/ kay-OSS-ee-əm[1]) is a publisher...

 

 

American football player (born 1986) American football player Morgan CoxCox in 2021No. 46 – Tennessee TitansPosition:Long snapperPersonal informationBorn: (1986-04-26) April 26, 1986 (age 37)Collierville, Tennessee, U.S.Height:6 ft 4 in (1.93 m)Weight:233 lb (106 kg)Career informationHigh school:Evangelical Christian (Cordova, Tennessee)College:Tennessee (2005–2009)Undrafted:2010Career history Baltimore Ravens (2010–2020) Tennessee Titans (2021–present) R...

 

 

Cet article est une ébauche concernant un écrivain italien. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Wu Ming est le pseudonyme d'un groupe d'écrivains italiens, créé en 2000 à partir d'auteurs actifs dans le projet Luther Blissett, le nom de plume d'une communauté d'écrivains de Bologne. Le groupe est l'auteur de plusieurs romans, dont 54 en 2002[1]. Logo officiel du groupe Wu Ming de 2001 à 2008...

PunisherLambang PunisherInformasi publikasiPenerbitMarvel ComicsPenampilan pertamaThe Amazing Spider-Man #129 (Februari 1974).Dibuat olehGerry Conway (penulis) John Romita Sr. (ilustrasi) Ross Andru (ilustrasi)Informasi dalam ceritaAlter egoFrancis Frank Castle[a] (lahir Castiglione)[1]Afiliasi tim United States Marine Corps Force Reconnaissance Marvel Knights Code Red[2] Heroes for Hire Secret Defenders Thunderbolts[3] Nama alias terkenalMr. Smith, Charles For...

 

 

Iceberg Cirque i Glacier nationalpark, USA Upper Thornton Lake Cirque i North Cascades nationalpark, USA Cirque, [sirk], från latin: circus 'ring', är en skålformad nisch som i en halvcirkel slipats ut av en glaciär ur en bergssida med öppning mot dalsidan.[1] En cirque kan också vara liknande depression som formats av vattenerosion. Typiska glaciärformade cirque på norra halvklotet ligger i en skuggig del i en nordväst-vänd sluttning och skyddade från den vanliga vindriktningen, v...

 

 

Dominican baseball player For the footballer, see Pedro Báez (footballer). Baseball player Pedro BáezBáez with the Los Angeles Dodgers in 2017PitcherBorn: (1988-03-11) March 11, 1988 (age 36)Baní, Dominican RepublicBatted: RightThrew: RightMLB debutMay 5, 2014, for the Los Angeles DodgersLast MLB appearanceApril 19, 2022, for the Houston AstrosMLB statistics (through 2022 season)Win–loss record21–15Earned run average3.08Strikeouts376 Teams Los Angel...

Ancient religious tendency This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Greco-Buddhist monasticism – news · newspapers · books · scholar · JSTOR (September 2016) (Learn how and when to remove this message) Part of a series onWestern BuddhismStatue of the Buddha in the Japanese Tea Garden, San Francisco Ma...

 

 

الأسلوب الحر في دراجات (بي ام اكس)معلومات عامةأعلى هيئة منظمة UCIالخصائصالتصنيف سباقات الدراجاتالتجهيزات المستعملة دراجة بي ام اكسالألعاب الأوليمبيةالأولمبية نعمالبلد أو الإقليم في جميع أنحاء العالمتعديل - تعديل مصدري - تعديل ويكي بيانات الأسلوب الحر في دراجات (بي ام اكس) ...

 

 

British politician and peer His GraceThe Duke of RichmondKG GCVO CBPhotograph of Lord Richmond, 1907Member of Parliament for ChichesterIn office1885–1889Preceded byLord Henry LennoxJohn Abel SmithSucceeded byLord Walter Gordon-LennoxMember of Parliament for West SussexIn office1869–1885Serving with Sir Walter Barttelot, BtPreceded byHon. Henry WyndhamSir Walter Barttelot, BtSucceeded byConstituency divided Personal detailsBornCharles Henry Gordon-Lennox(1845-12-27)27 December 1845...

Sculpture in Brussels NATO StarFrench: La Rose des VentsLocation outside NATO's previous headquartersArtistRaymond HuyberechtsYear1971MediumFactory-oxidised steelDimensions700 cm × 700 cm (280 in × 280 in)LocationNATO headquarters, City of Brussels, BelgiumCoordinates50°52′43.8″N 4°25′34″E / 50.878833°N 4.42611°E / 50.878833; 4.42611OwnerNorth Atlantic Treaty Organization The NATO Star is a sculpture situated in t...

 

 

此條目没有列出任何参考或来源。 (2012年2月7日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 伊凡一世 伊凡一世·丹尼洛维奇(钱袋)(Ива́н I Дани́лович Калита́,1288年—1340年3月31日),是莫斯科大公(约1325年-1340年3月31日在位),亚历山大·涅夫斯基幼子丹尼尔·亚历山德罗维奇�...

 

 

Eduardo De FilippoDe Filippo dengan model Teatro San Carlino [it] (1955)Lahir(1900-05-24)24 Mei 1900Napoli, Kerajaan ItaliaMeninggal31 Oktober 1984(1984-10-31) (umur 84)Roma, ItaliaPekerjaanPemeran, pengarang drama, penulis naskahSuami/istriIsabella Quarantotti (m. 1977) (w.2005)Thea Prandi (1956–1959) (w.1961)Dorothy Pennington (1928–1956)AnakLuisa Luisella De Filippo (1950–1960)Luca De FilippoAngelica Ippolito (putri tiri)Orang tuaLuisa De FilippoEduardo ScarpettaKe...

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

 

Final Piala Raja Spanyol 1992TurnamenPiala Raja Spanyol 1991–1992 Atlético Madrid Real Madrid 2 0 Tanggal27 Juni 1992StadionStadion Santiago Bernabéu, MadridWasitManuel Díaz VegaPenonton70.000← 1991 1993 → Final Piala Raja Spanyol 1992 adalah pertandingan final ke-88 dari turnamen sepak bola Piala Raja Spanyol untuk menentukan juara musim 1991–1992. Pertandingan ini diikuti oleh Atlético Madrid dan Real Madrid dan diselenggarakan pada 27 Juni 1992 di Stadion Santiago Berna...