More precisely it is a finite simple group of characteristic 2 type and width 2. Here characteristic 2 type means that its centralizers of involutions resemble those of groups of Lie type over fields of characteristic 2, and the width is roughly the maximal rank of an abelian group of oddorder normalizing a non-trivial 2-subgroup of G. When G is a group of Lie type of characteristic 2 type, the width is usually the rank (the dimension of a maximal torus of the algebraic group).
Classification
The quasithin groups were classified in a 1221-page paper by Michael Aschbacher and Stephen D. Smith (2004, 2004b). An earlier announcement by Geoffrey Mason (1980) of the classification, on the basis of which the classification of finite simple groups was announced as finished in 1983, was premature as the unpublished manuscript (Mason 1981) of his work was incomplete and contained serious gaps.
According to Aschbacher & Smith (2004b, theorem 0.1.1), the finite simple quasithin groups of even characteristic are given by
Groups of Lie type of characteristic 2 and rank 1 or 2, except that U5(q) only occurs for q = 4
If the condition "even characteristic" is relaxed to "even type" in the sense of the revision of the classification by Daniel Gorenstein, Richard Lyons, and Ronald Solomon, then the only extra group that appears is the Janko group J1.
Mason, Geoffrey (1980), "Quasithin groups", in Collins, Michael J. (ed.), Finite simple groups. II, London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], pp. 181–197, ISBN978-0-12-181480-9, MR0606048
Mason, Geoffrey (1981), The classification of finite quasithin groups, U. California Santa Cruz, p. 800 (unpublished typescript)