This definition is equivalent to saying that K has a unique (necessarily cyclic) extension Kn of degree n for each integer n ≥ 1, and that the union of these extensions is equal to Ks.[3] Moreover, as part of the structure of the quasi-finite field, there is a generator Fn for each Gal(Kn/K), and the generators must be coherent, in the sense that if n divides m, the restriction of Fm to Kn is equal to Fn.
Examples
The most basic example, which motivates the definition, is the finite field K = GF(q). It has a unique cyclic extension of degree n, namely Kn = GF(qn). The union of the Kn is the algebraic closure Ks. We take Fn to be the Frobenius element; that is, Fn(x) = xq.
Another example is K = C((T)), the ring of formal Laurent series in T over the field C of complex numbers. (These are simply formal power series in which we also allow finitely many terms of negative degree.) Then K has a unique cyclic extension
of degree n for each n ≥ 1, whose union is an algebraic closure of K called the field of Puiseux series, and that a generator of Gal(Kn/K) is given by
This construction works if C is replaced by any algebraically closed field C of characteristic zero.[4]
Notes
^(Artin & Tate 2009, §XI.3) say that the field satisfies "Moriya's axiom"
^As shown by Mikao Moriya (Serre 1979, chapter XIII, p. 188)