Quantum heat engines and refrigerators

A quantum heat engine is a device that generates power from the heat flow between hot and cold reservoirs. The operation mechanism of the engine can be described by the laws of quantum mechanics. The first realization of a quantum heat engine was pointed out by Scovil and Schulz-DuBois in 1959,[1] showing the connection of efficiency of the Carnot engine and the 3-level maser. Quantum refrigerators share the structure of quantum heat engines with the purpose of pumping heat from a cold to a hot bath consuming power first suggested by Geusic, Schulz-DuBois, De Grasse and Scovil.[2] When the power is supplied by a laser the process is termed optical pumping or laser cooling, suggested by Wineland and Hänsch.[3][4][5] Surprisingly heat engines and refrigerators can operate up to the scale of a single particle thus justifying the need for a quantum theory termed quantum thermodynamics.[6]

The 3-level amplifier as a quantum heat engine

The three level amplifier. Levels 1 and 3 are coupled to the hot reservoir. Levels 1 and 2 are coupled to the cold reservoir. Power is obtained when there is population inversion between levels 3 and 2.

The three-level-amplifier is the template of a quantum device. It operates by employing a hot and cold bath to maintain population inversion between two energy levels which is used to amplify light by stimulated emission[7] The ground state level (1-g) and the excited level (3-h) are coupled to a hot bath of temperature . The energy gap is . When the population on the levels equilibrate

where is the Planck constant and is the Boltzmann constant. The cold bath of temperature couples the ground (1-g) to an intermediate level (2-c) with energy gap . When levels 2-c and 1-g equilibrate then

.

The device operates as an amplifier when levels (3-h) and (2-c) are coupled to an external field of frequency . For optimal resonance conditions . The efficiency of the amplifier in converting heat to power is the ratio of work output to heat input:

.

Amplification of the field is possible only for positive gain (population inversion) . This is equivalent to . Inserting this expression into the efficiency formula leads to:

where is the Carnot cycle efficiency. Equality is obtained under a zero gain condition . The relation between the quantum amplifier and the Carnot efficiency was first pointed out by Scovil and Schultz-DuBois:[1]

Reversing the operation driving heat from the cold bath to the hot bath by consuming power constitutes a refrigerator. The efficiency of the refrigerator defined as the coefficient of performance (COP) for the reversed device is:

Types

Quantum devices can operate either continuously or by a reciprocating cycle. Continuous devices include solar cells converting solar radiation to electrical power, thermoelectric where the output is current and lasers where the output power is coherent light. The primary example of a continuous refrigerator is optical pumping and laser cooling.[8][9] Similarly to classical reciprocating engines, quantum heat engines also have a cycle that is divided into different strokes. A stroke is time segment in which a certain operation takes place (e.g. thermalization, or work extraction). Two adjacent strokes do not commute with each other. The most common reciprocating heat machines are the four-stroke machine, and the two-stroke machine. Reciprocating devices have been suggested operating either by the Carnot cycle[10][11] or the Otto cycle.[12]

In both types the quantum description allows to obtain equation of motion for the working medium and the heat flow from the reservoirs.

Quantum reciprocating heat engine and refrigerator

Quantum versions of most of the common thermodynamic cycles have been studied, for example the Carnot cycle,[10][11][13] Stirling cycle[14] and Otto cycle.[12][15]

The Otto cycle can serve as a template for other reciprocating cycles.

Quantum Otto cycle shown in the Entropy plane where the energy entropy and the Von Neumann entropy are displayed. is the internal frequency of the device and is controlled externally. It mimics the inverse volume in the Otto cycle. The red and blue lines are the hot and cold isochores. The cycle represents a heat pump.

It is composed of the following four segments:

  • Segment isomagnetic or isochoric process, partial equilibration with the cold bath under constant Hamiltonian. The dynamics of the working medium is characterized by the propagator .
  • Segment magnetization or adiabatic compression, the external field changes expanding the gap between energy levels of the Hamiltonian. The dynamics is characterized by the propagator .
  • Segment isomagnetic, or isochoric process partial equilibration with the hot bath described by the propagator .
  • Segment demagnetization or adiabatic expansion reducing the energy gaps in the Hamiltonian, characterized by the propagator .

The propagator of the four stroke cycle becomes , which is the ordered product of the segment propagators:

The propagators are linear operators defined on a vector space which completely determines the state of the working medium. Common to all thermodynamic cycles the consecutive segment propagators do not commute . Commuting propagators will lead to zero power.

In a reciprocating quantum heat engine the working medium is a quantum system such as spin systems[16] or an harmonic oscillator.[17] For maximum power the cycle time should be optimized. There are two basic timescales in the reciprocating refrigerator the cycle time and the internal timescale . In general when the engine operates in quasi-adiabatic conditions. The only quantum effect can be found at low temperatures where the unit of energy of the device becomes instead of . The efficiency at this limit is , always smaller than the Carnot efficiency . At high temperature and for the harmonic working medium the efficiency at maximum power becomes which is the endoreversible thermodynamics result.[17]

For shorter cycle times the working medium cannot follow adiabatically the change in the external parameter. This leads to friction-like phenomena. Extra power is required to drive the system faster. The signature of such dynamics is the development of coherence causing extra dissipation. Surprisingly the dynamics leading to friction is quantized meaning that frictionless solutions to the adiabatic expansion/compression can be found in finite time.[18] [19] As a result, optimization has to be carried out only with respect to the time allocated to heat transport. In this regime the quantum feature of coherence degrades the performance. Optimal frictionless performance is obtained when the coherence can be cancelled.

The shortest cycle times , sometimes termed sudden cycles,[20] have universal features. In this case coherence contributes to the cycles power.

A two-stroke engine quantum cycle equivalent to the Otto cycle based on two qubits has been proposed. The first qubit has frequency and the second . The cycle is composed of a first stroke of partial equilibration of the two qubits with the hot and cold bath in parallel. The second power stroke is composed of a partial or full swap between the qubits. The swap operation is generated by a unitary transformation which preserves the entropy as a result it is a pure power stroke.[21][22]

The quantum Otto cycle refrigerators shares the same cycle with magnetic refrigeration.[23]

Continuous quantum engines

Continuous quantum engines are the quantum analogues of turbines. The work output mechanism is coupling to an external periodic field, typically the electromagnetic field. Thus the heat engine is a model for a laser.[9] The models differ by the choice of their working substance and heat source and sink. Externally driven two-level,[24] three level[25] four-level[26][27] and coupled harmonic oscillators[28] have been studied.

The periodic driving splits the energy level structure of the working medium. This splitting allows the two level engine to couple selectively to the hot and cold baths and produce power. On the other hand, ignoring this splitting in the derivation of the equation of motion will violate the second law of thermodynamics.[29]

Non thermal fuels have been considered for quantum heat engines. The idea is to increase the energy content of the hot bath without increasing its entropy. This can be achieved by employing coherence[30] or a squeezed thermal bath.[31] These devices do not violate the second law of thermodynamics.

Equivalence of reciprocating and continuous heat machines in the quantum regime

Two-stroke, Four-stroke, and continuous machine are very different from each other. However it was shown[32] that there is a quantum regime where all these machines become thermodynamically equivalent to each other. While the intra cycle dynamics in the equivalence regime is very different in different engine types, when the cycle is completed they all turn out to provide the same amount of work and consume the same amount of heat (hence they share the same efficiency as well). This equivalence is associated with a coherent work extraction mechanism and has no classical analogue. These quantum features have been demonstrated experimentally.[33]

Heat engines and open quantum systems

The elementary example operates under quasi equilibrium conditions. Its main quantum feature is the discrete energy level structure. More realistic devices operate out of equilibrium possessing friction heat leaks and finite heat flow. Quantum thermodynamics supplies a dynamical theory required for systems out of equilibrium such as heat engines, thus, inserting dynamics into thermodynamics. The theory of open quantum systems constitutes the basic theory. For heat engines a reduced description of the dynamics of the working substance is sought, tracing out the hot and cold baths. The starting point is the general Hamiltonian of the combined systems:

and the system Hamiltonian is time dependent. A reduced description leads to the equation of motion of the system:

where is the density operator describing the state of the working medium and is the generator of dissipative dynamics which includes the heat transport terms from the baths. Using this construction, the total change in energy of the sub-system becomes:

leading to the dynamical version of the first law of thermodynamics:[6]

  • The power
  • Heat currents and .

The rate of entropy production becomes:

The global structure of quantum mechanics is reflected in the derivation of the reduced description. A derivation which is consistent with the laws of thermodynamics is based on the weak coupling limit. A thermodynamical idealization assumes that the system and the baths are uncorrelated, meaning that the total state of the combined system becomes a tensor product at all times:

Under these conditions the dynamical equations of motion become: where is the Liouville superoperator described in terms of the system's Hilbert space, where the reservoirs are described implicitly. Within the formalism of quantum open system, can take the form of the Gorini-Kossakowski-Sudarshan-Lindblad (GKS-L) Markovian generator or also known just as Lindblad equation .[34] Theories beyond the weak coupling regime have been proposed.[35] [36][37]

The absorption refrigerator is of unique importance in setting an autonomous quantum device. Such a device requires no external power and operates without external intervention in scheduling the operations .[38][39][40] The basic construct includes three baths; a power bath, a hot bath and a cold bath. The tricycle model is the template for the absorption refrigerator.

Quantum tricycle absorption refrigerator. The device is composed from three baths where . Heat flows from the power reservoir and cold bath to the hot bath.

The tricycle engine has a generic structure. The basic model consists of three thermal baths: A hot bath with temperature , a cold bath with temperature and a work bath with temperature .

Each bath is connected to the engine via a frequency filter which can be modeled by three oscillators:

where , and are the filter frequencies on resonance .

The device operates as a refrigerator by removing an excitation from the cold bath as well as from the work bath and generating an excitation in the hot bath. The term in the Hamiltonian is non linear and crucial for an engine or a refrigerator.

where is the coupling strength.

The first-law of thermodynamics represents the energy balance of heat currents originating from the three baths and collimating on the system:

At steady state no heat is accumulated in the tricycle, thus . In addition, in steady state the entropy is only generated in the baths, leading to the second law of thermodynamics:

This version of the second-law is a generalisation of the statement of Clausius theorem; heat does not flow spontaneously from cold to hot bodies. When the temperature , no entropy is generated in the power bath. An energy current with no accompanying entropy production is equivalent to generating pure power: , where is the power output.

Quantum refrigerators and the third law of thermodynamics

There are seemingly two independent formulations of the third law of thermodynamics both originally were stated by Walther Nernst. The first formulation is known as the Nernst heat theorem, and can be phrased as:

  • The entropy of any pure substance in thermodynamic equilibrium approaches zero as the temperature approaches zero.

The second formulation is dynamical, known as the unattainability principle:[41]

  • It is impossible by any procedure, no matter how idealized, to reduce any assembly to absolute zero temperature in a finite number of operations.

At steady state the second law of thermodynamics implies that the total entropy production is non-negative. When the cold bath approaches the absolute zero temperature, it is necessary to eliminate the entropy production divergence at the cold side when , therefore

For the fulfillment of the second law depends on the entropy production of the other baths, which should compensate for the negative entropy production of the cold bath. The first formulation of the third law modifies this restriction. Instead of the third law imposes , guaranteeing that at absolute zero the entropy production at the cold bath is zero: . This requirement leads to the scaling condition of the heat current .

The second formulation, known as the unattainability principle can be rephrased as;[42]

  • No refrigerator can cool a system to absolute zero temperature at finite time.

The dynamics of the cooling process is governed by the equation

where is the heat capacity of the bath. Taking and with , we can quantify this formulation by evaluating the characteristic exponent of the cooling process,

This equation introduce the relation between the characteristic exponents and . When then the bath is cooled to zero temperature in a finite time, which implies a violation of the third law. It is apparent from the last equation, that the unattainability principle is more restrictive than the Nernst heat theorem.

References

  1. ^ a b Scovil, H. E. D.; Schulz-DuBois, E. O. (1959). "Three-Level Masers as Heat Engines". Physical Review Letters. 2 (6): 262–263. Bibcode:1959PhRvL...2..262S. doi:10.1103/PhysRevLett.2.262. ISSN 0031-9007.
  2. ^ Geusic, J. E.; Bois, E. O. Schulz-Du; De Grasse, R. W.; Scovil, H. E. D. (1959). "Three Level Spin Refrigeration and Maser Action at 1500 mc/sec". Journal of Applied Physics. 30 (7): 1113–1114. Bibcode:1959JAP....30.1113G. doi:10.1063/1.1776991. ISSN 0021-8979.
  3. ^ D. J. Wineland and H. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975)
  4. ^ Hänsch, T.W.; Schawlow, A.L. (1975). "Cooling of gases by laser radiation". Optics Communications. 13 (1): 68–69. Bibcode:1975OptCo..13...68H. doi:10.1016/0030-4018(75)90159-5. ISSN 0030-4018.
  5. ^ Letokhov, V.S.; Minogin, V.G.; Pavlik, B.D. (1976). "Cooling and trapping of atoms and molecules by a resonant laser field". Optics Communications. 19 (1): 72–75. Bibcode:1976OptCo..19...72L. doi:10.1016/0030-4018(76)90388-6. ISSN 0030-4018.
  6. ^ a b Alicki, R (1979). "The quantum open system as a model of the heat engine". Journal of Physics A: Mathematical and General. 12 (5): L103–L107. Bibcode:1979JPhA...12L.103A. doi:10.1088/0305-4470/12/5/007. ISSN 0305-4470.
  7. ^ Yariv, Amnon (1989). Quantum Electronics, 3rd ed., Wiley. ISBN 0-471-60997-8
  8. ^ Narevicius, Edvardas; Bannerman, S Travis; Raizen, Mark G (2009). "Single-photon molecular cooling". New Journal of Physics. 11 (5): 055046. arXiv:0808.1383. Bibcode:2009NJPh...11e5046N. doi:10.1088/1367-2630/11/5/055046. ISSN 1367-2630.
  9. ^ a b Kosloff, Ronnie; Levy, Amikam (2014). "Quantum Heat Engines and Refrigerators: Continuous Devices". Annual Review of Physical Chemistry. 65 (1): 365–393. arXiv:1310.0683. Bibcode:2014ARPC...65..365K. doi:10.1146/annurev-physchem-040513-103724. ISSN 0066-426X. PMID 24689798. S2CID 25266545.
  10. ^ a b Geva, Eitan; Kosloff, Ronnie (1992). "A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid". The Journal of Chemical Physics. 96 (4): 3054–3067. Bibcode:1992JChPh..96.3054G. doi:10.1063/1.461951. ISSN 0021-9606.
  11. ^ a b Bender, Carl M; Brody, Dorje C; Meister, Bernhard K (2000). "Quantum mechanical Carnot engine". Journal of Physics A: Mathematical and General. 33 (24): 4427–4436. arXiv:quant-ph/0007002. Bibcode:2000JPhA...33.4427B. doi:10.1088/0305-4470/33/24/302. ISSN 0305-4470. S2CID 5335.
  12. ^ a b Feldmann, Tova; Kosloff, Ronnie (2000). "Performance of discrete heat engines and heat pumps in finite time". Physical Review E. 61 (5): 4774–4790. arXiv:physics/0003007. Bibcode:2000PhRvE..61.4774F. doi:10.1103/PhysRevE.61.4774. ISSN 1063-651X. PMID 11031518. S2CID 2277942.
  13. ^ Quan, H. T.; Liu, Yu-xi; Sun, C. P.; Nori, Franco (2007). "Quantum thermodynamic cycles and quantum heat engines". Physical Review E. 76 (3): 031105. arXiv:quant-ph/0611275. Bibcode:2007PhRvE..76c1105Q. doi:10.1103/PhysRevE.76.031105. ISSN 1539-3755. PMID 17930197. S2CID 3009953.
  14. ^ Wu, F.; Chen, L.; Sun, F.; Wu, C.; Zhu, Yonghong (1998). "Performance and optimization criteria for forward and reverse quantum Stirling cycles". Energy Conversion and Management. 39 (8): 733–739. Bibcode:1998ECM....39..733W. doi:10.1016/S0196-8904(97)10037-1. ISSN 0196-8904.
  15. ^ Kieu, T. D. (2006). "Quantum heat engines, the second law and Maxwell's daemon". The European Physical Journal D. 39 (1): 115–128. arXiv:quant-ph/0311157. Bibcode:2006EPJD...39..115K. doi:10.1140/epjd/e2006-00075-5. ISSN 1434-6060. S2CID 119382163.
  16. ^ Feldmann, Tova; Kosloff, Ronnie (2003). "Quantum four-stroke heat engine: Thermodynamic observables in a model with intrinsic friction". Physical Review E. 68 (1): 016101. arXiv:quant-ph/0303046. Bibcode:2003PhRvE..68a6101F. doi:10.1103/PhysRevE.68.016101. ISSN 1063-651X. PMID 12935194. S2CID 23777311.
  17. ^ a b Rezek, Yair; Kosloff, Ronnie (2006). "Irreversible performance of a quantum harmonic heat engine". New Journal of Physics. 8 (5): 83. arXiv:quant-ph/0601006. Bibcode:2006NJPh....8...83R. doi:10.1088/1367-2630/8/5/083. ISSN 1367-2630.
  18. ^ Campo, A. del; Goold, J.; Paternostro, M. (2014). "More bang for your buck: Super-adiabatic quantum engines". Scientific Reports. 4 (1): 6208. Bibcode:2014NatSR...4E6208C. doi:10.1038/srep06208. ISSN 2045-2322. PMC 4147366. PMID 25163421.
  19. ^ Beau, Mathieu; Jaramillo, Juan; del Campo, Adolfo (2016). "Scaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity". Entropy. 18 (5): 168. arXiv:1603.06019. Bibcode:2016Entrp..18..168B. doi:10.3390/e18050168. ISSN 1099-4300.
  20. ^ Feldmann, Tova; Kosloff, Ronnie (2012). "Short time cycles of purely quantum refrigerators". Physical Review E. 85 (5): 051114. arXiv:1204.4059. Bibcode:2012PhRvE..85e1114F. doi:10.1103/PhysRevE.85.051114. ISSN 1539-3755. PMID 23004710. S2CID 31174895.
  21. ^ Allahverdyan, Armen E.; Hovhannisyan, Karen; Mahler, Guenter (2010). "Optimal refrigerator". Physical Review E. 81 (5): 051129. arXiv:1007.4307. Bibcode:2010PhRvE..81e1129A. doi:10.1103/PhysRevE.81.051129. ISSN 1539-3755. PMID 20866207. S2CID 12750223.
  22. ^ Uzdin, Raam; Kosloff, Ronnie (2014). "The multilevel four-stroke swap engine and its environment". New Journal of Physics. 16 (9): 095003. arXiv:1404.6182. Bibcode:2014NJPh...16i5003U. doi:10.1088/1367-2630/16/9/095003. ISSN 1367-2630.
  23. ^ Shirron, Peter J.; McCammon, Dan (2014). "Salt pill design and fabrication for adiabatic demagnetization refrigerators". Cryogenics. 62: 163–171. Bibcode:2014Cryo...62..163S. doi:10.1016/j.cryogenics.2014.03.022. ISSN 0011-2275.
  24. ^ Gelbwaser-Klimovsky, D.; Alicki, R.; Kurizki, G. (2013). "Minimal universal quantum heat machine". Physical Review E. 87 (1): 012140. arXiv:1209.1190. Bibcode:2013PhRvE..87a2140G. doi:10.1103/PhysRevE.87.012140. ISSN 1539-3755. PMID 23410316. S2CID 18826566.
  25. ^ Geva, Eitan; Kosloff, Ronnie (1996). "The quantum heat engine and heat pump: An irreversible thermodynamic analysis of the three-level amplifier". The Journal of Chemical Physics. 104 (19): 7681–7699. Bibcode:1996JChPh.104.7681G. doi:10.1063/1.471453. ISSN 0021-9606.
  26. ^ Scully, M. O.; Chapin, K. R.; Dorfman, K. E.; Kim, M. B.; Svidzinsky, A. (2011). "Quantum heat engine power can be increased by noise-induced coherence". Proceedings of the National Academy of Sciences. 108 (37): 15097–15100. Bibcode:2011PNAS..10815097S. doi:10.1073/pnas.1110234108. ISSN 0027-8424. PMC 3174605. PMID 21876187.
  27. ^ Harbola, Upendra; Rahav, Saar; Mukamel, Shaul (2012). "Quantum heat engines: A thermodynamic analysis of power and efficiency". EPL (Europhysics Letters). 99 (5): 50005. Bibcode:2012EL.....9950005H. doi:10.1209/0295-5075/99/50005. ISSN 0295-5075. S2CID 13833767.
  28. ^ Kosloff, Ronnie (1984). "A quantum mechanical open system as a model of a heat engine". The Journal of Chemical Physics. 80 (4): 1625–1631. Bibcode:1984JChPh..80.1625K. doi:10.1063/1.446862. ISSN 0021-9606.
  29. ^ Szczygielski, Krzysztof; Gelbwaser-Klimovsky, David; Alicki, Robert (2013). "Markovian master equation and thermodynamics of a two-level system in a strong laser field". Physical Review E. 87 (1): 012120. arXiv:1211.5665. Bibcode:2013PhRvE..87a2120S. doi:10.1103/PhysRevE.87.012120. ISSN 1539-3755. PMID 23410296. S2CID 25511420.
  30. ^ Scully, M. O. (2003). "Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence". Science. 299 (5608): 862–864. Bibcode:2003Sci...299..862S. doi:10.1126/science.1078955. ISSN 0036-8075. PMID 12511655. S2CID 120884236.
  31. ^ Roßnagel, J.; Abah, O.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. (2014). "Nanoscale Heat Engine Beyond the Carnot Limit". Physical Review Letters. 112 (3): 030602. arXiv:1308.5935. Bibcode:2014PhRvL.112c0602R. doi:10.1103/PhysRevLett.112.030602. ISSN 0031-9007. PMID 24484127. S2CID 1826585.
  32. ^ Uzdin, Raam; Levy, Amikam; Kosloff, Ronnie (2015). "Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures". Physical Review X. 5 (3): 031044. arXiv:1502.06592. Bibcode:2015PhRvX...5c1044U. doi:10.1103/PhysRevX.5.031044. ISSN 2160-3308.
  33. ^ Klatzow, James; Becker, Jonas N; Ledingham, Patrick M; Weinzetl, Christian; Kaczmarek, Krzysztof T; Saunders, Dylan J; Nunn, Joshua; Walmsley, Ian A; Uzdin, Raam; Poem, Eilon (2019). "Experimental demonstration of quantum effects in the operation of microscopic heat engines". Physical Review Letters. 122 (11): 110601. arXiv:1710.08716. Bibcode:2019PhRvL.122k0601K. doi:10.1103/PhysRevLett.122.110601. ISSN 1079-7114. PMID 30951320. S2CID 206318713.
  34. ^ Kosloff, Ronnie (2013). "Quantum Thermodynamics: A Dynamical Viewpoint". Entropy. 15 (12): 2100–2128. arXiv:1305.2268. Bibcode:2013Entrp..15.2100K. doi:10.3390/e15062100. ISSN 1099-4300.
  35. ^ Ludovico, M. F.; Lim, J. S.; Moskalets, M.; Arrachea, L.; Sánchez, D. (21 April 2014). "Dynamical energy transfer in ac-driven quantum systems". Physical Review B. 89 (16): 161306. Bibcode:2014PhRvB..89p1306L. doi:10.1103/PhysRevB.89.161306. hdl:10261/116187. S2CID 119265583.
  36. ^ Gallego, R; Riera, A; Eisert, J (2014). "Thermal machines beyond the weak coupling regime". New Journal of Physics. 16 (12): 125009. arXiv:1310.8349. Bibcode:2014NJPh...16l5009G. doi:10.1088/1367-2630/16/12/125009. ISSN 1367-2630.
  37. ^ Esposito, Massimiliano; Ochoa, Maicol A.; Galperin, Michael (2015). "Quantum Thermodynamics: A Nonequilibrium Green's Function Approach". Physical Review Letters. 114 (8): 080602. arXiv:1411.1800. Bibcode:2015PhRvL.114h0602E. doi:10.1103/PhysRevLett.114.080602. ISSN 0031-9007. PMID 25768745. S2CID 11498686.
  38. ^ Palao, José P.; Kosloff, Ronnie; Gordon, Jeffrey M. (2001). "Quantum thermodynamic cooling cycle". Physical Review E. 64 (5): 056130. arXiv:quant-ph/0106048. Bibcode:2001PhRvE..64e6130P. doi:10.1103/PhysRevE.64.056130. ISSN 1063-651X. PMID 11736037. S2CID 8201978.
  39. ^ Linden, Noah; Popescu, Sandu; Skrzypczyk, Paul (2010). "How Small Can Thermal Machines Be? The Smallest Possible Refrigerator". Physical Review Letters. 105 (13): 130401. arXiv:0908.2076. Bibcode:2010PhRvL.105m0401L. doi:10.1103/PhysRevLett.105.130401. ISSN 0031-9007. PMID 21230755. S2CID 2707740.
  40. ^ Levy, Amikam; Kosloff, Ronnie (2012). "Quantum Absorption Refrigerator". Physical Review Letters. 108 (7): 070604. arXiv:1109.0728. Bibcode:2012PhRvL.108g0604L. doi:10.1103/PhysRevLett.108.070604. ISSN 0031-9007. PMID 22401189. S2CID 6981288.
  41. ^ Landsberg, P. T. (1956). "Foundations of Thermodynamics". Reviews of Modern Physics. 28 (4): 363–392. Bibcode:1956RvMP...28..363L. doi:10.1103/RevModPhys.28.363. ISSN 0034-6861.
  42. ^ Levy, Amikam; Alicki, Robert; Kosloff, Ronnie (2012). "Quantum refrigerators and the third law of thermodynamics". Physical Review E. 85 (6): 061126. arXiv:1205.1347. Bibcode:2012PhRvE..85f1126L. doi:10.1103/PhysRevE.85.061126. ISSN 1539-3755. PMID 23005070. S2CID 24251763.

Further reading

Deffner, Sebastian and Campbell, Steve. "Quantum Thermodynamics: An introduction to the thermodynamics of quantum information", (Morgan & Claypool Publishers, 2019).[1]

F. Binder, L. A. Correa, C. Gogolin, J. Anders, G. Adesso (eds.) "Thermodynamics in the Quantum Regime. Fundamental Aspects and New Directions." (Springer 2018)

Gemmer, Jochen, M. Michel, and Günter Mahler. "Quantum thermodynamics. Emergence of thermodynamic behavior within composite quantum systems. 2." (2009).

Petruccione, Francesco, and Heinz-Peter Breuer. The theory of open quantum systems. Oxford university press, 2002.

  1. ^ Deffner, Sebastian (2019). Quantum Thermodynamics. doi:10.1088/2053-2571/ab21c6. ISBN 978-1-64327-658-8. S2CID 195791624.

Read other articles:

Coordinate: 18°20′N 64°50′W / 18.333333°N 64.833333°W18.333333; -64.833333 Isole Vergini Americane (dettagli) (dettagli) Motto: United in Pride and Hope(Uniti nell'orgoglio e nella speranza) Isole Vergini Americane - Localizzazione Dati amministrativi Nome completo Isole Vergini degli Stati Uniti Nome ufficiale Virgin Islands of the United States Dipendente da  Stati Uniti Lingue ufficiali Inglese Capitale Charlotte Amalie  (18.481 ab. / 2010) ...

 

 

Berbagai macam gembor yang terbuat dari logam Gembor atau penyiram tanaman adalah wadah berbentuk seperti cerek besar yang biasanya memiliki pegangan dan corong, dan digunakan untuk menyirami tanaman dengan tangan. Gembor telah digunakan sejak setidaknya 79 M, sepanjang yang pernah ditemukan, dan sejak saat itu gembor mengalami banyak perbaikan dalam hal desain. Selain menyiram tanaman, gembor juga memiliki beragam kegunaan, karena merupakan alat yang cukup fleksibel. Kapasitas wadah dari gem...

 

 

Callitrichales Callitriche brutia var. hamulata (Kütz. ex W.D.J.Koch) Lansdown, syn. Callitriche hamulata Kütz. ex W. D. J. Koch, 2. Callitriche hermaphroditica L., syn. Callitriche autumnalis L. Klasifikasi ilmiah Kerajaan: Plantae Divisi: Magnoliophyta Kelas: Magnoliopsida Ordo: Callitrichales Famili lihat teks. Callitrichales adalah salah satu ordo anggota tumbuhan berbunga yang termasuk dalam anak kelas Asteridae, kelas Magnoliopsida, menurut Sistem klasifikasi Cronquist (1981). Ada ti...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يونيو 2020) هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسي...

 

 

GNOME Boxes GNOME Boxes 3.32Tipeperangkat lunak bebas dan sumber terbuka Versi stabil 41.2 (6 Desember 2021) LisensiGNU Library General Public License, version 2.0 (en) Bagian dariGNOME Core Applications (en) Karakteristik teknisSistem operasiLinux Bahasa pemrogramanVala (en) dan C Antarmuka BibliotecaGTK Informasi pengembangPengembangProjek GNOMESumber kode Kode sumberPranala Debiangnome-boxes Arch Linuxgnome-boxes Ubuntugnome-boxes Gentoognome-extra/gnome-boxes Fedoragnome-boxes Informasi t...

 

 

KoperSutradaraRichard Oh, Dewi Umaya, Tati Gobel & Richard Oh, Karima JufriDitulis olehRichard OhPemeranAnjasmaraMaya HasanDjenar Maesa AyuDjaduk FeriantoPenata musikAndi RiantoSinematograferYadi SugandhiPenyuntingWawan I. WibowoDistributorMetafor PicturesTanggal rilis31 Agustus 2006Durasi133 MenitNegaraIndonesiaBahasaBahasa Indonesia Koper (The Lost Suitcase) adalah sebuah film drama Indonesia yang diproduksi pada tahun 2006. Film yang disutradarai oleh Richard Oh ini dibintangi an...

Department in Occitania, France This article is about the French department. For other uses, see Aveyron (disambiguation). Department of France in OccitaniaAveyron Avairon (Occitan)Department of FranceFrom top down, left to right: Conques, prefecture building in Rodez, Castle of Belcastel, the river Aveyron in Villefranche-de-Rouergue and Peyre FlagCoat of armsLocation of Aveyron in FranceCoordinates: 44°15′N 02°42′E / 44.250°N 2.700°E / 44.250; 2.700Count...

 

 

Ostedes Ostedes variegata Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Subfamili: Lamiinae Tribus: Acanthocinini Genus: Ostedes Ostedes adalah genus kumbang tanduk panjang yang tergolong familia Cerambycidae. Genus ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang dalam genus ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hid...

 

 

  لمعانٍ أخرى، طالع أندرو جاكسون (توضيح). أندرو جاكسون (بالإنجليزية: Andrew Jackson)‏  الرئيس السابع للولايات المتحدة تولى المنصب4 مارس 1829 نائب الرئيس جون كالهون(1829-1832)مارتن فان بيورين (1833-1837) جون كوينسي آدامز مارتن فان بيورين معلومات شخصية الميلاد 15 مارس 1767 الوفاة 8 يونيو 1845...

Australian Open 2007 Sport Tennis Data 15 gennaio - 28 gennaio Edizione 95ª Categoria Grande Slam (ITF) Superficie Cemento Località Melbourne, Victoria, Australia Campioni Singolare maschile Roger Federer Singolare femminile Serena Williams Doppio maschile Bob Bryan / Mike Bryan Doppio femminile Cara Black / Liezel Huber Doppio misto Daniel Nestor / Elena Lichovceva Singolare ragazzi Brydan Klein Singolare ragazze Anastasija Pavljučenkova Doppio ragazzi Graeme Dyce / Harri Heliövaara Dop...

 

 

Ukrainian service of the BBC BBC News УкраїнаBBC News UkraineTypeRadio network and websiteCountryUnited KingdomAvailabilityInternationalEndowmentForeign and Commonwealth Office, UKOwnerBBCKey peopleMaciek Bernatt-Reschynskyy (Head of Service)[1]Launch date1992Official websitewww.bbc.com/ukrainian BBC News Ukrainian (Ukrainian: BBC News Україна) is the Ukrainian service of BBC News which conveys the latest political, social, economical and sport news relevant to Ukraine a...

 

 

В Википедии есть статьи о других людях с фамилией Кисслинг. Ребекка Кисслингангл. Rebecca Kiessling Дата рождения 22 июля 1969(1969-07-22) (54 года) Место рождения Мичиган, США Гражданство  США Род деятельности Гражданский активист, пролайфер, правозащитник Сайт rebeccakiessling.com  М...

Peta Jamaika pada tahun 1528 Juan de Esquivel lahir di Sevilla, Spanyol dan meninggal di Jamaika pada tahun 1513. Dia menaklukkan pulau Jamaika untuk Kerajaan Spanyol. Dia menemani Christopher Columbus dalam perjalanan kedua ke benua Amerika pada tahun 1493 dan berpartisipasi dalam penaklukan dan kolonisasi dari pulau La Española, di mana dia tinggal untuk waktu yang lama. Pranala luar Contact of the Antilles aborigines with the Spanish conquerors Pengawasan otoritas Umum ISNI 1 VIAF 1 World...

 

 

قصر عائشة فهميمعلومات عامةنوع المبنى قصرالمكان القاهرةالمنطقة الإدارية القاهرة البلد  مصرالتصميم والإنشاءالمهندس المعماري أنطونيو لاشياك معلومات أخرىالإحداثيات 30°03′32″N 31°13′30″E / 30.059019°N 31.224985°E / 30.059019; 31.224985 تعديل - تعديل مصدري - تعديل ويكي بيانات قصر عائ...

 

 

The United Kingdom last had compulsory national identity cards during World War II when they were introduced for security purposes.[1] Wartime ID cards were finally withdrawn by the Churchill government in 1952 because of the tension they created between the police and innocent citizens. Proposals to reintroduce them have been raised on a number of occasions since then. During the early 2000s and 2010s, organisations such as NO2ID campaigned against these proposals. Identity cards we...

Pendatang asing atau Orang pendatang adalah ungkapan Melayu yang umum digunakan untuk merujuk kepada orang asing atau imigran. Meskipun paling sering digunakan untuk merujuk kepada imigran asing, terutama imigran ilegal, Pendatang asing telah digunakan oleh beberapa politisi di Malaysia sebagai cara merendahkan menangani non-Bumiputera Malaysia. Artikel bertopik Malaysia ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

 

 

Scottish singer and songwriter (born 1987) Emeli SandéMBESandé in 2014Background informationBirth nameAdele Emily SandéBorn (1987-03-10) 10 March 1987 (age 37)[1]Sunderland, Tyne and Wear, EnglandOriginAberdeen, ScotlandOccupation(s) Singer songwriter Years active2008–presentSpouse(s) Adam Gouraguine ​ ​(m. 2012; div. 2014)​Websiteemelisande.comMusical careerGenres R&B soul gospel Instrument(s) Vocals piano Labels Virgin Vi...

 

 

American actor (1907–1998) For other uses, see Gene Autry (disambiguation). The Singing Cowboy redirects here. For the 1936 film, see The Singing Cowboy (film). Gene AutryAutry in the 1940sBornOrvon Grover Autry(1907-09-29)September 29, 1907Tioga, Texas, U.S.DiedOctober 2, 1998(1998-10-02) (aged 91)Studio City, California, U.S.Burial placeForest Lawn Memorial Park, Hollywood Hills, CaliforniaOther namesThe Singing CowboyGene MichaelsOccupationsActormusiciansingercomposerrodeo perf...

Bertha von Suttner (1905) Bertha Sophia Felicita Freifrau von Suttner, geborene Gräfin Kinsky von Wchinitz und Tettau, Pseudonyme: B. Oulot, Jemand (* 9. Juni 1843 in Prag; † 21. Juni 1914 in Wien), war eine tschechisch-österreichische Pazifistin, Friedensforscherin und Schriftstellerin. Sie wurde 1905 als erste Frau mit dem seit 1901 vergebenen Friedensnobelpreis ausgezeichnet. Inhaltsverzeichnis 1 Leben 1.1 Frühe Jahre 1.2 Journalistische und schriftstellerische Tätigke...

 

 

Betxícomune Betxí – VedutaMunicipio LocalizzazioneStato Spagna Comunità autonoma Valencia ProvinciaCastellón AmministrazioneAlcaldeAlfred Remolar Franch (Compromís) dal 2011 TerritorioCoordinate39°55′59.88″N 0°12′00″W39°55′59.88″N, 0°12′00″W (Betxí) Altitudine102 m s.l.m. Superficie21,4 km² Abitanti5 763 (2015) Densità269,3 ab./km² Comuni confinantiArtana, Nules, Onda, Villarreal Altre informazioniCod. postale12549 Pref...