Quantum capacitance

Quantum capacitance,[1] also known as chemical capacitance[2] and electrochemical capacitance ,[3] was first theoretically introduced by Serge Luryi (1988),[1] and is defined as the variation of electrical charge with respect to the variation of electrochemical potential , i.e., .[3] In the simplest example, if you make a parallel-plate capacitor where one or both of the plates has a low density of states, then the capacitance is not given by the normal formula for parallel-plate capacitors, . Instead, the capacitance is lower, as if there was another capacitor in series, . This second capacitance, related to the density of states of the plates, is the quantum capacitance and is represented by . The equivalent capacitance is called electrochemical capacitance .

Quantum capacitance is especially important for low-density-of-states systems, such as a 2-dimensional electronic system in a semiconductor surface or interface or graphene, and can be used to construct an experimental energy functional of electron density.[3]

Overview

When a voltmeter is used to measure an electronic device, it does not quite measure the pure electric potential (also called Galvani potential). Instead, it measures the electrochemical potential, also called "fermi level difference", which is the total free energy difference per electron, including not only its electric potential energy but also all other forces and influences on the electron (such as the kinetic energy in its wavefunction). For example, a p-n junction in equilibrium, there is a galvani potential (built-in potential) across the junction, but the "voltage" across it is zero (in the sense that a voltmeter would measure zero voltage).

In a capacitor, there is a relation between charge and voltage, . As explained above, we can divide the voltage into two pieces: The galvani potential, and everything else.

In a traditional metal-insulator-metal capacitor, the galvani potential is the only relevant contribution. Therefore, the capacitance can be calculated in a straightforward way using Gauss's law.

However, if one or both of the capacitor plates is a semiconductor, then galvani potential is not necessarily the only important contribution to capacitance. As the capacitor charge increases, the negative plate fills up with electrons, which occupy higher-energy states in the band structure, while the positive plate loses electrons, leaving behind electrons with lower-energy states in the band structure. Therefore, as the capacitor charges or discharges, the voltage changes at a different rate than the galvani potential difference.

In these situations, one cannot calculate capacitance merely by looking at the overall geometry and using Gauss's law. One must also take into account the band-filling / band-emptying effect, related to the density-of-states of the plates. The band-filling / band-emptying effect alters the capacitance, imitating a second capacitance in series. This capacitance is called quantum capacitance, because it is related to the energy of an electron's quantum wavefunction.

Some scientists refer to this same concept as chemical capacitance, because it is related to the electrons' chemical potential.[2]

The ideas behind quantum capacitance are closely linked to Thomas–Fermi screening and band bending.

Theory

Take a capacitor where one side is a metal with essentially-infinite density of states. The other side is the low density-of-states material, e.g. a 2DEG, with density of states . The geometrical capacitance (i.e., the capacitance if the 2DEG were replaced by a metal, due to galvani potential alone) is .

Now suppose that N electrons (a charge of ) are moved from the metal to the low-density-of-states material. The Galvani potential changes by . Additionally, the internal chemical potential of electrons in the 2DEG changes by , which is equivalent to a voltage change of .

The total voltage change is the sum of these two contributions. Therefore, the total effect is as if there are two capacitances in series: The conventional geometry-related capacitance (as calculated by Gauss's law), and the "quantum capacitance" related to the density of states. The latter is:

In the case of an ordinary 2DEG with parabolic dispersion,[1]

where is the valley degeneracy factor, and m* is effective mass.

Applications

The quantum capacitance of graphene is relevant to understanding and modeling gated graphene.[4] It is also relevant for carbon nanotubes.[5]

In modeling and analyzing dye-sensitized solar cells, the quantum capacitance of the sintered TiO2 nanoparticle electrode is an important effect, as described in the work of Juan Bisquert.[2][6][7]

Luryi proposed a variety of devices using 2DEGs, which only work because of the low 2DEG density-of-states, and its associated quantum capacitance effect.[1] For example, in the three-plate configuration metal-insulator-2DEG-insulator-metal, the quantum capacitance effect means that the two capacitors interact with each other.

Quantum capacitance can be relevant in capacitance–voltage profiling.

When supercapacitors are analyzed in detail, quantum capacitance plays an important role.[8]

References

  1. ^ a b c d Serge Luryi (1988). "Quantum capacitance devices" (PDF). Applied Physics Letters. 52 (6): 501–503. Bibcode:1988ApPhL..52..501L. doi:10.1063/1.99649.
  2. ^ a b c Bisquert, Juan; Vyacheslav S. Vikhrenko (2004). "Interpretation of the Time Constants Measured by Kinetic Techniques in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar Cells". The Journal of Physical Chemistry B. 108 (7): 2313–2322. doi:10.1021/jp035395y.
  3. ^ a b c Miranda, David A.; Bueno, Paulo R. (2016-09-21). "Density functional theory and an experimentally-designed energy functional of electron density". Phys. Chem. Chem. Phys. 18 (37): 25984–25992. Bibcode:2016PCCP...1825984M. doi:10.1039/c6cp01659f. ISSN 1463-9084. PMID 27722307.
  4. ^ Mišković, Z. L.; Nitin Upadhyaya (2010). "Modeling Electrolytically Top-Gated Graphene". Nanoscale Research Letters. 5 (3): 505–511. arXiv:0910.3666. Bibcode:2010NRL.....5..505M. doi:10.1007/s11671-009-9515-3. PMC 2894001. PMID 20672092.
  5. ^ Ilani, S.; L. a. K. Donev; M. Kindermann; P. L. McEuen (2006). "Measurement of the quantum capacitance of interacting electrons in carbon nanotubes" (PDF). Nature Physics. 2 (10): 687–691. Bibcode:2006NatPh...2..687I. doi:10.1038/nphys412.
  6. ^ Juan Bisquert (2003). "Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells". Phys. Chem. Chem. Phys. 5 (24): 5360. Bibcode:2003PCCP....5.5360B. doi:10.1039/B310907K.
  7. ^ Juan Bisquert (2014). Nanostructured Energy Devices: Equilibrium Concepts and Kinetics. CRC Press. ISBN 9781439836026. Archived from the original on 2016-11-23. Retrieved 2017-01-09.
  8. ^ Bueno, Paulo R. (2019-02-28). "Nanoscale origins of super-capacitance phenomena". Journal of Power Sources. 414: 420–434. Bibcode:2019JPS...414..420B. doi:10.1016/j.jpowsour.2019.01.010. ISSN 0378-7753. S2CID 104416995.

Read other articles:

British politician (1870–1949) For other people named Walter Runciman, see Walter Runciman (disambiguation). The Right HonourableThe Viscount Runcimanof DoxfordPCPresident of the Board of EducationIn office12 April 1908 – 23 October 1911MonarchsEdward VIIGeorge VPrime MinisterH. H. AsquithPreceded byReginald McKennaSucceeded byJack PeasePresident of the Board of AgricultureIn office23 October 1911 – 6 August 1914MonarchGeorge VPrime MinisterH. H. AsquithPreceded byThe ...

 

Bishkek БишкекKotaTranskripsi Kyrgyz • ISO 9biškek • BGN/PCGNbishkek • ALA-LCbishkekAlun alun Ala-Too BenderaLambang kebesaranNegara KyrgyzstanShaarBishkek[1]Raion[2] Distrik LeninskyOktyabrskyPervomayskySverdlovsky Pemerintahan • Wali kotaAziz SurakmatovLuas[3] • Total127 km2 (49 sq mi)Ketinggian800 m (2,600 ft)Populasi (2021)[3] • Total1.074....

 

Biografi ini tidak memiliki sumber tepercaya sehingga isinya tidak dapat dipastikan. Bantu memperbaiki artikel ini dengan menambahkan sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus.Cari sumber: Faisal I dari Irak – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Biografi ini memerlukan lebih banyak catat...

This article is about the river. For other uses, see Hron (disambiguation). River in SlovakiaHronThe Hron near Starý TekovCurrent and watershed of the Hron River in SlovakiaLocationCountrySlovakiaRegionBanská Bystrica, NitraPhysical characteristicsSourceHron • locationKráľova hoľa near Telgárt • elevation980 m (3,220 ft) MouthDanube • locationKamenica nad Hronom, Nitra Region • elevation112 m (367 f...

 

« Léon Jouhaux » redirige ici. Pour l’article homophone, voir Léon Jouhaud. Léon JouhauxLéon Jouhaux vers 1951.FonctionsPrésidentForce ouvrièredécembre 1947 - 28 avril 1954PrésidentConseil économique, social et environnemental1947-1954Émile RocheSecrétaire général de la Confédération générale du travail1909-1947Louis NielBenoît FrachonBiographieNaissance 1er juillet 187915e arrondissement de ParisDécès 28 avril 1954 (à 74 ans)12e arrondissement de Pari...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

Bandiera Olimpica I principali simboli olimpici universalmente noti e riconosciuti dal Comitato Olimpico Internazionale (CIO) sono: la bandiera olimpica con i cinque cerchi il motto olimpico l'inno olimpico la fiamma olimpica Esistono poi una serie di simboli che contraddistinguono ogni singola edizione dell'Olimpiade: la torcia olimpica e il braciere olimpico dove arde la fiamma l'emblema olimpico (o logo olimpico) il manifesto olimpico la mascotte olimpica la medaglia olimpica il diploma ol...

 

Ducato di Modena e Reggio (dettagli) (dettagli) Motto: Dextera Domini exaltavit me(La destra del Signore mi ha esaltato) Ducato di Modena e Reggio - LocalizzazioneIl Ducato di Modena e Reggio nel 1815 Dati amministrativiLingue ufficialiitaliano Lingue parlateemiliano, InnoSerbi Dio (dal 1814, nel periodo degli Austria-Este) CapitaleModena Altre capitaliReggio Emilia, Carpi, Correggio, Mirandola, Novellara, Massa, Carrara e Guastalla Dipendente da Sacro Romano Impero (fino al 1806) PoliticaFor...

 

Fort Calhoun Nuclear Power PlantFort Calhoun plant, seen from U.S. Highway 75CountryUnited StatesLocationWashington County, near Blair, NebraskaCoordinates41°31′13″N 96°4′38″W / 41.52028°N 96.07722°W / 41.52028; -96.07722StatusBeing decommissionedConstruction began1966Commission dateAugust 9, 1973 (1973-08-09)Decommission date2058 (2058)[1]Construction cost$754.65 million (2007 USD)[2]Owner(s)Omaha Pub...

Estuary bay on the Texas coast San Antonio BayThe shore of San Antonio BaySan Antonio BayView from the International Space StationLocationTexas Gulf CoastCoordinates28°18′19″N 96°44′17″W / 28.30528°N 96.73806°W / 28.30528; -96.73806River sourcesGuadalupe RiverOcean/sea sourcesGulf of MexicoBasin countriesUnited StatesSurface area143,000 acres (58,000 ha)[1]: 6  San Antonio Bay is a bay on the Texas Gulf Coast situated betwe...

 

Overview of the geography of Indiana Indiana map of Köppen climate classification. Regions of Indiana The geography of Indiana comprises the physical features of the land and relative location of U.S. State of Indiana. Indiana is in the north-central United States and borders on Lake Michigan. Surrounding states are Michigan to the north and northeast, Illinois to the west, Kentucky to the south, and Ohio to the east. The entire southern boundary is the Ohio River. Statistics Total area is 3...

 

Political party in Romania National Socialist Party of Romania(National-Socialist, Fascist and Christian Steel Shield) Partidul Național-Socialist din România(Pavăza de Oțel Național-Socialistă, Fascistă și Creștină)PresidentȘtefan TătărescuFoundedMarch 25, 1932DissolvedJuly 5, 1934Succeeded byNumerus Valachicus National MovementNationalist Soldiers' FrontGerman People's PartyHeadquartersPrecupeții Vechi Street 1, Obor, BucharestNewspaperCrez NouParamilitary wingPavăza...

Emperor of Japan from 1867 to 1912 Emperor Meiji明治天皇Portrait by Uchida Kuichi, 1873Emperor of JapanReign30 January 1867 – 30 July 1912Enthronement13 February 1867PredecessorKōmeiSuccessorTaishōShōgunTokugawa Yoshinobu (1866–1868)Daijō-daijinSanjō Sanetomi (1871–1885)BornMutsuhito, Prince Sachi(祐宮睦仁親王)(1852-11-03)3 November 1852Kyoto Gyoen National Garden, Kyoto, Yamashiro Province, Tokugawa shogunateDied30 July 1912(1912-07-30) (aged 59)Meiji Palace, Tokyo ...

 

Ethiopia is called the water tower of Africa due to its combination of mountainous areas with a comparatively large share of water resources in Africa. Only a fraction of this potential has been harnessed so far, 1% at the beginning of the 21st century. In order to become the powerhouse of Africa, Ethiopia is actively exploiting its water resources by building dams, reservoirs, irrigation and diversion canals and hydropower stations. The benefits of the dams are not only limited to hydropowe...

 

NFL team season 1998 New Orleans Saints seasonHead coachMike DitkaHome fieldLouisiana SuperdomeResultsRecord6–10Division place3rd NFC WestPlayoff finishDid not qualifyPro BowlersT Willie Roaf ← 1997 Saints seasons 1999 → The 1998 New Orleans Saints season was the team's 32nd as a member of the National Football League (NFL).[1] The Saints failed to qualify for the playoffs for the sixth consecutive season, and after a promising start of 3–0 only equalled...

此條目没有列出任何参考或来源。 (2016年2月28日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 此條目需要擴充。 (2014年8月2日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 《世界地名翻译大辞典》作者周定国(主编)语言汉语發行信�...

 

For related races, see 2018 United States Senate elections. For the other Senate election in Mississippi held in parallel, see 2018 United States Senate special election in Mississippi. 2018 United States Senate election in Mississippi ← 2012 November 6, 2018 2024 → Turnout49.7%   Nominee Roger Wicker David Baria Party Republican Democratic Popular vote 547,619 369,567 Percentage 58.49% 39.47% County results Congressional district results Precinct resultsWicke...

 

سلاف شرقيونالمجموعات العرقية المرتبطةفرع من سلاف الفروع  القائمة ... روسأوكرانيونبيلاروسروسينيونPodlashuks (en) Poleshuks (en) قوزاقAlaskan Creoles (en) Kamchadals (en) تعديل - تعديل مصدري - تعديل ويكي بيانات جزء من سلسلة مقالات حولتاريخ السلاف الشرقيين العصور الوسطى سلاف شرقيون خزر الخاقانية الرو...

  لمعانٍ أخرى، طالع معركة مانيلا (توضيح). يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) معركة مانيلا جزء من الحرب العالمية الثانية  صورة جوية ...

 

American blues musician (1915–1992) This article is about the musician. For the English footballer, see Will Dixon. Willie DixonDixon at Monterey Jazz Festival 1981Background informationBirth nameWilliam James DixonBorn(1915-07-01)July 1, 1915Vicksburg, Mississippi, U.S.DiedJanuary 29, 1992(1992-01-29) (aged 76)Burbank, CaliforniaGenres Blues Chicago blues rhythm and blues gospel Occupation(s) Musician songwriter arranger record producer Instrument(s) Vocals double bass bass guitar Yea...