The Qingling orogenic belt can be divided into two major regions, the North Qinling Belt and the South Qingling belt, which are located at the boundary of the southern North China Craton and the northern South China Craton respectively.[3] The most interesting thing about the evolution of Qinling orogenic belt is the multiple individual micro-block interactions.[8] The tectonic evolution of the whole Qinling belt was not a single event but a combination of several collisional and extensional events, which mainly includes 4 phases:[3][8]
Development of basement of the belt (2.5 billion years to 800 million years ago)
Evolution of plates and associated ocean basin (800 to 250 million years ago)
Major belt formation (orogeny) (250 to 140 million years ago)
Extension and stretching of the belt (140 million years before to the present)
Notes about orogenic belt
Orogenic belt or orogen means a tectonic belt that was formed when rocks and sediments are piled up due to the compressional force exerted by two colliding tectonic plates.[15]Sediments and rocks located on the top of the subducting plate will be pushed and piled up by another plate (overriding plate).[16] Meanwhile, rocks that belong to the overriding plate are also commonly deformed along the plate margin.[16] Eventually, as the two plates continue colliding, the rocks will develop into a mountain chain, the geology of which is called orogen or orogenic belt.[16] The whole process is termed orogeny.[16]
Development of basement of belt (2.5 billion years to 800 million years ago)
At the beginning of the Qinling rock record (around 2.5 billion years ago), the North Qinling belt and South Qinling belt were not initially formed together at the same location at the same time.[3] The South Qinling belt was formed by continental magmatic activities 2.5 billion years ago.[19] Then, magma cooled down and became rocks which contribute to the major basement of the South Qinling belt.[19] On the other hand, the North Qinling belt was formed later.[20] It was first formed 1000 million years ago by magmatic activities which occurred in an oceanic-arc environment.[20]
During the early Neoproterozoic (1000 million years ago), the North Qinling belt and the South Qinling were aligned along the same subducting plate boundary at the Northeastern part of super-continentRodinia (an extremely large tectonic plate composed of different smaller plates).[3] During subduction, the South China block overrode an oceanic plate was compressed and South Qinling belt first formed on a small scale.[3]
On the other hand, the formation of North Qinling belt was more complicated. It did not initially exist with North China Block, but a part of supercontinentRodinia.[11][21] At the subducting plate boundary, it collided with Rodinia and was folded up forming North Qinling Belt.[6][3]
In addition, at some distances further away from the North Qinling Belt, a continental arc with volcanoes was formed at another subducting plate boundary as well, which is named the Proto-Erlangping arc.[3][6] An arc can be formed because the subducted lower plate melted in the mantle and rose up to the opposite upper plate while cutting through lines of weakness of plate.[16] As a result, magma eventually reached the top of the plate, then cooled down and solidified into rocks, forming an arc.[16] In the meantime, Proto-Erlangping ocean was created at divergent plate boundary where plates separate, so that the Proto-Erlangping arc was moving away from North Qinling belt.[6][3]
Evolution of belt and associated ocean (800 to 250 million years ago)
Later on in the middle Neoproterozoic (around 750 million years ago), the supercontinent containing Proto-Erlangping arc, North Qinling Belt and South Qinling Belt was broken up.[3] The two belts were transported to another place together.[3][18] The oceanic part of South China block was broken and separated into two parts creating the Shangdan ocean.[3][18] This is because divergent convection magma dominated at that period, when two parts separate, magma rise up from the gap of them creating a larger oceanic plate (as well as an ocean). On the other end of the oceanic plate, it collided with another oceanic plate coincidently.[3] An island arc called 'DanFeng island arc' was formed.[3][18]
A similar process occurred at the North Qinling belt, North Qinling belt and Rodinia were separated.[3] As a result, a new ocean formed as well. At this time North and South Qinling belt were still aligning next to each other, therefore they shared the same Shangdan ocean.[3][18] By the time the North Qinling Belt moved away from Rodinia, it was colliding with the Proto-Erlangping arc as well. Therefore, two subduction processes occurred at the same time at the Proto-Erlangping arc.[3][18]
At the early Cambrian (around 540 million years ago), Gondwana (considered as super-continent by some geologists) started to develop.[3][6][18] The North and South Qinling Belt were located at the Northeastern part of it.[3] This was the time when North China Block first met the North Qinling belt, locating at the other end of Proto-Erlangping arc.[3][6] During that period, the North Qinling belt was no longer located next to South Qinling belt, but facing it.[3][6] As same as the situation before Cambrian, the North Qingling belt and South Qinling Belt still share the Shangdan ocean.[6][22] What different was the subducting plate changed from one to another, at the Danfeng island.[3][6]
At late Cambrian (around 500 million years ago), the North China block migrated closer to North Qinling block.[3][6] Consequently, the Proto-Erlangping ocean was closed as the whole oceanic plate had subducted to the mantle.[3][21] This also implies the North Qinling belt collided with Proto-Erlangping belt after the closure of the ocean.[3][12]
From the late Ordovician to late Silurian (460 to 420 million years), the collided North Qinling belt and Proto-Erlangping belt were moved to a magma spreading centre, which split plates apart by divergent convection magma.[3][6][12][1] This turn out the Erlangping ocean was opened again.
At the early Devonian (around 400 million years ago), South Qinling belt and North China block moved towards each other, while extensive convergent convection magma occurred,[3][21][18][1][23] although some geologists claimed it happened between 320 and 300 million years before.[6][22] As a result, Erlangping arc, North Qinling belt, South Qinling belt and North China block all collided together.[3][6][1] With all oceans closed up and blocks moving towards each other, rocks were then piled up within blocks.[3][6][1][24] Meanwhile, Mianlue ocean was opened, since South China block and the rest of the block complex were separated by divergent convection magma current.[6] The ocean created is also regarded as back-arc basin.
During the middle Mississippian (around 300 million years ago), the Mianlue ocean stopped spreading.[1] The South China Plate moved towards the Qinling complex and North China Block.[1] The oceanic part of South China Block subducted to the mantle and the ocean started closing.[1]
Major belt formation (250 to 140 million years ago)
At the early Triassic (around 250 million years ago), the South China block finally collided with Qinling complex, and the continent-continent collision occurred.[6][11][14][25][27] Accordingly, the Mianlue ocean eventually closed completely.[6][17][25] Resulting from extremely strong compressional force, all individual blocks were shortened horizontally but thickened vertically.[13][25][27] At middle Jurassic (174-163 million years ago), the South China block subducted beneath the South Qinling block and part of the plate broke off to the subduction zone.[6][13][27][25]
However, the collisional event was different from normal one.[26] It is because the South China Plate collided to the North China plate with a relatively rotational motion. Such that the eastern part of Qinling belt was compressed earlier than the western part.[26]
Extension and stretching of belt (140 million years ago to the present)
Starting from 140 million years (Cretaceous) before to the present, the tectonic activities changed from collisional to extensional, which is a process of crustal stretching resulting in crustal thinning.[9][10][13] Until the late Cretaceous (83 million years ago), the Qinling complex was affected by a WNW-ESE extension event in west of Qinling.[28][29] As a result, right-lateral strike slip fault became dominated.[29][28] At Mid-Eocene to Early Oligocene (45 to 24 million years ago), normal fault dominated the complex back due to extensional event at the northern part.[29] Until the late Oligocene to early Miocene (24 to 14 million years ago), left-lateral strike-slip fault became the major deformation feature in Qinling.[29][28] However, at the late Miocene (9 million years ago), normal fault replaced left-lateral strike-slip fault because of a NE-SW extensional event caused by rifting until the late Pliocene.[29][28] At the late Pliocene (3.5 million years ago), left-lateral strike-slip fault dominated the Qinling, which was caused by a NNW-SSE extension event until the Present.[29][28]
Time period
Type of fault
Reason
Early Cretaceous to late Cretaceous (140 to 83 million years ago).[9][10][13]
Extensional event at the north east of Qinling[28][29]
Geology of Qinling
The geology of Qinling is complex which is formed due to many tectonic activities and multiple crustal block interactions.[8] It can be divided into 9 main groups: South-North China Block, Kuanping Group, Erlangping Group, North Qingling Block, Shangdan suture zone, North-South Qinling Block, South-South Qinling Block, Mianlue Suture zone and Dabie terrane.[7][30][31][32][33][34][35]
Further to the south, Kuanping group is dominated meta-sedimentary rock including greenschist, amphibolite and mica-schist, which were metamorphosed due to a collision between North China Block and Erlangping island arc.[30] In addition, ophiolites were exposed to the earth surface by obduction.[33][34] The Kuanping group was formed in the early to middle Proterozoic (2.5-1 billion years ago).[30][33][34]
Erlangping Group
At the early Paleozoic (around 545–440 million years ago), the Erlangping island arc subducted beneath the North China Block (obduction), so that those arc-related ophiolite with mélange was moved to the surface of the earth.[7] Within an ophiolite sequence, ultramafic rock, pillow basalt. sill basalt and a small amount of chert can be found.
The South Qinling Block is comparatively larger than the North Qinling Block, which is further divided into two parts: North and South Qinling Belt.[30] The North-South Qinling Belt involves Archean to Late Proterozoic basement rock, which can be dated back to 3.8 to 0.545 billion years ago.[30]Limestone, Shale, sandstone and other sedimentary rocks were deposited on top of basement rocks at the Paleozoic (545–250 million years ago), with a minor amount of sandstone deposited until the Triassic period (205 million years ago).[30] On the other hand, the geology of South-South Qinling Belt is mainly presented by precambrian (545 billion years ago) basement rock.[30] Besides, the basement rocks were intruded by alkaline dyke in the Silurian.[30] After that, since the North part of South Qinling belt was in a shallow marine environment, sedimentary facies reflecting the paleo-environment was formed.[30] This included shale, turbidite and limestone.[30] Starting from the late Triassic to Cretaceous, the sedimentary environment turned to a terrestrial setting. The terrestrial facies can be indicated by conglomerate and sandstone.[30]
Mianlue suture zone
The Mianlue suture zone was evolved from Mianlue oceanic basin, which was closed at the Mid-Triassic and developed into suture zone.[7][30] Therefore, ophiolite representing oceanic setting and volcanic rock indicating subduction zone was discovered there.[7][30] As the ocean closed and blocks collided towards each other, basalts were metamorphosed into meta-basaltic rock.[7][30] From data provided, rocks mentioned above can be dated back to 345 to 200 million years ago.[7][30]
^ abcdefghLiu, Liang; Liao, Xiaoying; Wang, Yawei; Wang, Chao; Santosh, M.; Yang, Min; Zhang, Chengli; Chen, Danling (1 August 2016). "Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation". Earth-Science Reviews. 159 (Supplement C): 58–81. Bibcode:2016ESRv..159...58L. doi:10.1016/j.earscirev.2016.05.005.
^ abLiu, Yan-Sui; Wang, Jie-Yong; Guo, Li-Ying (2006). "GIS-Based Assessment of Land Suitability for Optimal Allocation in the Qinling Mountains, China". Pedosphere. 16 (5): 579–586. doi:10.1016/S1002-0160(06)60091-X.
^ abcdefghijklmnopqrWu, Yuan-Bao; Zheng, Yong-Fei (1 May 2013). "Tectonic evolution of a composite collision orogen: An overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China". Gondwana Research. 23 (4): 1402–1428. Bibcode:2013GondR..23.1402W. doi:10.1016/j.gr.2012.09.007.
^ abcdefShicai, SHAO (7 September 2010). "Qinling Orogenic Belt: Its Palaeozoic-Mesozoic Evolution and Metallogenesis". Acta Geologica Sinica - English Edition. 74 (3): 452–457. doi:10.1111/j.1755-6724.2000.tb00005.x. S2CID129370626.
^ abcdeMercier, Jacques Louis; Vergely, Pierre; Zhang, Yue Qiao; Hou, Ming Jin; Bellier, Olivier; Wang, Yong Ming (2 January 2013). "Structural records of the Late Cretaceous–Cenozoic extension in Eastern China and the kinematics of the Southern Tan-Lu and Qinling Fault Zone (Anhui and Shaanxi provinces, PR China)". Tectonophysics. 582 (Supplement C): 50–75. Bibcode:2013Tectp.582...50M. doi:10.1016/j.tecto.2012.09.015.
^ abcDiwu, Chunrong; Sun, Yong; Zhang, Hong; Wang, Qian; Guo, Anlin; Fan, Longgang (30 March 2012). "Episodic tectonothermal events of the western North China Craton and North Qinling Orogenic Belt in central China: Constraints from detrital zircon U–Pb ages". Journal of Asian Earth Sciences. 47 (Supplement C): 107–122. Bibcode:2012JAESc..47..107D. doi:10.1016/j.jseaes.2011.07.012.
^ abcWang, HongLiang; Chen, Liang; Sun, Yong; Liu, XiaoMing; Xu, XueYi; Chen, JuanLu; Zhang, Hong; Diwu, ChunRong (1 November 2007). "~4.1 Ga xenocrystal zircon from Ordovician volcanic rocks in western part of North Qinling Orogenic Belt". Chinese Science Bulletin. 52 (21): 3002–3010. Bibcode:2007ChSBu..52.3002W. doi:10.1007/s11434-007-0316-8. ISSN1001-6538. S2CID198142471.
^ abcdefgGuo, Zhen; Chen, Y. John (30 June 2016). "Crustal structure of the eastern Qinling orogenic belt and implication for reactivation since the Cretaceous". Tectonophysics. 683 (Supplement C): 1–11. Bibcode:2016Tectp.683....1G. doi:10.1016/j.tecto.2016.06.007.
^ abCondie, Kent C. (1997). Plate tectonics and crustal evolution (4th ed.). Oxford: Butterworth Heinemann. ISBN978-0-7506-3386-4.
^ abcdefgNichols, Gary (2008). Sedimentology and stratigraphy (2nd ed.). Oxford: Blackwell Science. ISBN978-1-4051-3592-4.
^ abQian, Tao; Liu, Shaofeng; Li, Wangpeng; Gao, Tangjun; Chen, Xinlu (10 February 2015). "Early–Middle Jurassic evolution of the northern Yangtze foreland basin: a record of uplift following Triassic continent–continent collision to form the Qinling–Dabieshan orogenic belt". International Geology Review. 57 (3): 327–341. Bibcode:2015IGRv...57..327Q. doi:10.1080/00206814.2015.1006270. S2CID128411494.
^ abcdefghShi, Yu; Yu, Jin-Hai; Santosh, M. (1 July 2013). "Tectonic evolution of the Qinling orogenic belt, Central China: New evidence from geochemical, zircon U–Pb geochronology and Hf isotopes". Precambrian Research. 231 (Supplement C): 19–60. Bibcode:2013PreR..231...19S. doi:10.1016/j.precamres.2013.03.001.
^ abNie, Hu; Yao, Jin; Wan, Xin; Zhu, Xi-Yan; Siebel, Wolfgang; Chen, Fukun (1 November 2016). "Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: Evidence from zircon ages and Hf-Nd isotopic compositions of basement rocks". Precambrian Research. 286 (Supplement C): 167–179. Bibcode:2016PreR..286..167N. doi:10.1016/j.precamres.2016.10.005.
^ abZhu, Xi-Yan; Chen, Fukun; Li, Shuang-Qing; Yang, Yi-Zeng; Nie, Hu; Siebel, Wolfgang; Zhai, Ming-Guo (1 July 2011). "Crustal evolution of the North Qinling terrain of the Qinling Orogen, China: Evidence from detrital zircon U–Pb ages and Hf isotopic composition". Gondwana Research. 20 (1): 194–204. Bibcode:2011GondR..20..194Z. doi:10.1016/j.gr.2010.12.009.
^Guowei, Zhang; Zaiping, Yu; Yong, Sun; Shunyou, Cheng; Taohong, Li; Feng, Xue; Chengli, Zhang (1 January 1989). "The major suture zone of the Qinling orogenic belt". Journal of Southeast Asian Earth Sciences. 3 (1): 63–76. Bibcode:1989JAESc...3...63G. doi:10.1016/0743-9547(89)90010-X.
^ abcBao, Zhiwei; Wang, Christina Yan; Zeng, Lingjun; Sun, Weidong; Yao, Junming (9 March 2015). "Slab break-off model for the Triassic syn-collisional granites in the Qinling orogenic belt, Central China: Zircon U-Pb age and Hf isotope constraints". International Geology Review. 57 (4): 492–507. Bibcode:2015IGRv...57..492B. doi:10.1080/00206814.2015.1017777. S2CID129316796.
^ abcdefghijklmnopqrstuvwYueqiao, ZHANG; Vergèly, Pierre; Mercier, Jacques-Louis; Yongmin, WANG; Yong, ZHANG; Dezhi, HUANG (September 1999). "Kinematic History and Changes in the Tectonic Stress Regime during the Cenozoic along the Qinling and Southern Tanlu Fault Zones". Acta Geologica Sinica - English Edition. 73 (3): 264–274. Bibcode:1999AcGlS..73..264Z. doi:10.1111/j.1755-6724.1999.tb00835.x. S2CID129709434.
^ abcdefghijklmnopqrstuvwxMercier, Jacques Louis; Vergely, Pierre; Zhang, Yue Qiao; Hou, Ming Jin; Bellier, Olivier; Wang, Yong Ming (2 January 2013). "Structural records of the Late Cretaceous–Cenozoic extension in Eastern China and the kinematics of the Southern Tan-Lu and Qinling Fault Zone (Anhui and Shaanxi provinces, PR China)". Tectonophysics. 582 (Supplement C): 50–75. Bibcode:2013Tectp.582...50M. doi:10.1016/j.tecto.2012.09.015.